The Atmospheric Equation of Water Vapor with Saturation
Michele Coti Zelati; Roger Temam
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 309-336
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCoti Zelati, Michele, and Temam, Roger. "The Atmospheric Equation of Water Vapor with Saturation." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 309-336. <http://eudml.org/doc/290821>.
@article{CotiZelati2012,
abstract = {We analyze the equation of water vapor content in the atmosphere taking into account the saturation phenomenon. This equation is considered alone or coupled with the equation describing the evolution of the temperature $T$. The concentration of water vapor $q$ belongs to the interval $[0, 1]$ and the saturation concentration $q_\{s\} \in (0, 1)$ is the threshold after which the vapor condensates and becomes water (rain). The equation for $q$ (as well as the coupled $q-T$ system) thus accounts for possible change of phase.},
author = {Coti Zelati, Michele, Temam, Roger},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {309-336},
publisher = {Unione Matematica Italiana},
title = {The Atmospheric Equation of Water Vapor with Saturation},
url = {http://eudml.org/doc/290821},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Coti Zelati, Michele
AU - Temam, Roger
TI - The Atmospheric Equation of Water Vapor with Saturation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 309
EP - 336
AB - We analyze the equation of water vapor content in the atmosphere taking into account the saturation phenomenon. This equation is considered alone or coupled with the equation describing the evolution of the temperature $T$. The concentration of water vapor $q$ belongs to the interval $[0, 1]$ and the saturation concentration $q_{s} \in (0, 1)$ is the threshold after which the vapor condensates and becomes water (rain). The equation for $q$ (as well as the coupled $q-T$ system) thus accounts for possible change of phase.
LA - eng
UR - http://eudml.org/doc/290821
ER -
References
top- CAO, C. - TITI, E. S., Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166, (2) (2007), 245-267. Zbl1151.35074MR2342696DOI10.4007/annals.2007.166.245
- COTI ZELATI, M. - TEMAM, R., The primitive equations of the atmosphere in presence of vapor saturation, in preparation. Zbl1256.35174
- EWALD, B. D. - TEMAM, R., Maximum principles for the primitive equations of the atmosphere, Discrete Contin. Dyn. Syst., 7 (2001), 343-362. Zbl1030.86004MR1808406DOI10.3934/dcds.2001.7.343
- FEIREISL, E., A note on uniqueness for parabolic problems with discontinuous nonlinearities, Nonlinear Anal., 16 (1991), 1053-1056. Zbl0736.35060MR1107003DOI10.1016/0362-546X(91)90106-B
- FEIREISL, E. - NORBURY, J., Some existence, uniqueness and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 1-17. Zbl0784.35117MR1130591DOI10.1017/S0308210500028262
- GIANNI, R. - HULSHOF, J., The semilinear heat equation with a Heaviside source term, European J. Appl. Math., 3 (1992), 367-379. Zbl0789.35088MR1196817DOI10.1017/S0956792500000917
- GILL, A. E., Atmosphere-ocean dynamics, International Geophysics Series, Vol. 30, Academic Press, San Diego, 1982.
- GUO, B. - HUANG, D., Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 083508, 23 pp. MR2258607DOI10.1063/1.2245207
- GUO, B. - HUANG, D., Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491. Zbl1229.35181MR2802021DOI10.1016/j.jde.2011.05.010
- HALTINER, G. J., Numerical weather prediction, John Wiley & Sons, New York, 1971.
- HALTINER, G. J. - WILLIAMS, R. T., Numerical prediction and dynamic meteorology, John Wiley & Sons, New York, 1980.
- KOBELKOV, G. M., Existence of a solution `in the large' for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.286. Zbl1102.35003MR2245395DOI10.1016/j.crma.2006.04.020
- KOBELKOV, G. M., Existence of a solution `in the large' for ocean dynamics equations, J. Math. Fluid Mech, 9 (2007), 588-610. Zbl1132.35443MR2374160DOI10.1007/s00021-006-0228-4
- LIONS, J-L. - MAGENES, E., Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York, 1972. Zbl0227.35001MR350177
- LIONS, J-L. - TEMAM, R. - WANG, S., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288. Zbl0746.76019MR1158375
- PEDLOSKY, J., Geophysical fluid dynamics, Springer-Verlag, New York, 1987. Zbl0713.76005
- PETCU, M., On the three-dimensional primitive equations, Adv. Differential Equations, 11 (2006), 1201-1226. Zbl1145.35350MR2277062
- PETCU, M. - TEMAM, R. - ZIANE, M., Some mathematical problems in geophysical fluid dynamics, in ``Computational Methods for the Atmosphere and the Oceans'', Special Volume of the Handbook of Numerical Analysis, Vol. XIV, R. Temam and J. Tribbia guest editors, edited by P.G. Ciarlet, Elsevier, Amsterdam, 2008. MR2454281DOI10.1016/S1570-8659(08)00212-3
- TEMAM, R., Navier-Stokes equations, theory and numerical analysis, AMS Chelsea Publishing, Providence, 2001. Zbl0981.35001MR1846644DOI10.1090/chel/343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.