The 3-Dimensional Oscillon Equation

Francesco Di Plinio; Gregory S. Duane; Roger Temam

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 1, page 19-53
  • ISSN: 0392-4041

Abstract

top
On a bounded smooth domain Ω 3 , we consider the generalized oscillon equation t t u ( x , t ) + ω ( t ) t u ( x , t ) - μ ( t ) Δ u ( x , t ) + V ( u ( x , t ) ) = 0 , x Ω 3 , t with Dirichlet boundary conditions, where ω is a time-dependent damping, μ is a time-dependent squared speed of propagation, and V is a nonlinear potential of critical growth. Under structural assumptions on ω and μ we establish the existence of a pullback global attractor 𝒜 = 𝒜 ( t ) in the sense of [1]. Under additional assumptions on μ , which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.

How to cite

top

Di Plinio, Francesco, Duane, Gregory S., and Temam, Roger. "The 3-Dimensional Oscillon Equation." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 19-53. <http://eudml.org/doc/290848>.

@article{DiPlinio2012,
abstract = {On a bounded smooth domain $\Omega \subset \mathbb\{R\}^\{3\}$, we consider the generalized oscillon equation \begin\{equation*\}\partial\_\{tt\} u(x, t) + \omega(t)\partial\_\{t\}u(x, t) - \mu(t)\Delta u(x, t) + V'(u(x, t)) = 0, \qquad x \in \Omega \subset \mathbb\{R\}^\{3\}, \ t \in \mathbb\{R\}\end\{equation*\} with Dirichlet boundary conditions, where $\omega$ is a time-dependent damping, $\mu$ is a time-dependent squared speed of propagation, and $V$ is a nonlinear potential of critical growth. Under structural assumptions on $\omega$ and $\mu$ we establish the existence of a pullback global attractor $\mathcal\{A\} = \mathcal\{A\}(t)$ in the sense of [1]. Under additional assumptions on $\mu$, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.},
author = {Di Plinio, Francesco, Duane, Gregory S., Temam, Roger},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {19-53},
publisher = {Unione Matematica Italiana},
title = {The 3-Dimensional Oscillon Equation},
url = {http://eudml.org/doc/290848},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Di Plinio, Francesco
AU - Duane, Gregory S.
AU - Temam, Roger
TI - The 3-Dimensional Oscillon Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 19
EP - 53
AB - On a bounded smooth domain $\Omega \subset \mathbb{R}^{3}$, we consider the generalized oscillon equation \begin{equation*}\partial_{tt} u(x, t) + \omega(t)\partial_{t}u(x, t) - \mu(t)\Delta u(x, t) + V'(u(x, t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^{3}, \ t \in \mathbb{R}\end{equation*} with Dirichlet boundary conditions, where $\omega$ is a time-dependent damping, $\mu$ is a time-dependent squared speed of propagation, and $V$ is a nonlinear potential of critical growth. Under structural assumptions on $\omega$ and $\mu$ we establish the existence of a pullback global attractor $\mathcal{A} = \mathcal{A}(t)$ in the sense of [1]. Under additional assumptions on $\mu$, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.
LA - eng
UR - http://eudml.org/doc/290848
ER -

References

top
  1. DI PLINIO, F. - DUANE, G. S. - TEMAM, R., Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. Zbl1223.37100MR2725285DOI10.3934/dcds.2011.29.141
  2. DI PLINIO, F. - PATA, V., Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. Zbl1181.35283MR2486806DOI10.1134/S1061920809010038
  3. DI PLINIO, F. - PATA, V. - ZELIK, S., On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. Zbl1149.35015MR2414334DOI10.1512/iumj.2008.57.3266
  4. FARHI, E. - GRAHAM, N. - KHEMANI, V. et al., An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701. 
  5. FARHI, E. - GRAHAM, N. - GUTH, A. H. et al., Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019. 
  6. FOIAS, C. - PRODI, G., Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. Zbl0176.54103MR223716
  7. FODOR, G. - FORGACS, P. - HORVATH, Z. - LUKACS, A., Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003. 
  8. FODOR, G. - FORGACS, P. - MEZEI, M., Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043. 
  9. GRASSELLI, M. - PATA, V., On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. Zbl1058.35044MR2018135
  10. GRASSELLI, M. - PATA, V., Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. Zbl1079.35022MR2106302DOI10.3934/cpaa.2004.3.849
  11. HERTZBERG, M. P., Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022. 
  12. LIONS, J.-L. - PRODI, G., Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. Zbl0091.42105MR108964
  13. MANDELBROT, B. B., The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982). Zbl0504.28001MR665254
  14. PRODI, G., On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466. 
  15. SCHROEDER, M., Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). MR1098021
  16. TEMAM, R., Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997). Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.