The 3-Dimensional Oscillon Equation

Francesco Di Plinio; Gregory S. Duane; Roger Temam

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 1, page 19-53
  • ISSN: 0392-4041

Abstract

top
On a bounded smooth domain \Omega\subset\mathbb{R}^{3}, we consider the generalized oscillon equation \partial_{tt}u(x,t)+\omega(t)\partial_{t}u(x,t)-\mu(t)\Delta u(x,t)+V^{\prime}% (u(x,t))=0,\qquad x\in\Omega\subset\mathbb{R}^{3},\ t\in\mathbb{R} with Dirichlet boundary conditions, where \omega is a time-dependent damping, \mu is a time-dependent squared speed of propagation, and V is a nonlinear potential of critical growth. Under structural assumptions on \omega and \mu we establish the existence of a pullback global attractor \mathcal{A}=\mathcal{A}(t) in the sense of [1]. Under additional assumptions on \mu, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.

How to cite

top

Di Plinio, Francesco, Duane, Gregory S., and Temam, Roger. "The 3-Dimensional Oscillon Equation." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 19-53. <http://eudml.org/doc/290848>.

@article{DiPlinio2012,
abstract = {On a bounded smooth domain $\Omega \subset \mathbb\{R\}^\{3\}$, we consider the generalized oscillon equation \begin\{equation*\}\partial\_\{tt\} u(x, t) + \omega(t)\partial\_\{t\}u(x, t) - \mu(t)\Delta u(x, t) + V'(u(x, t)) = 0, \qquad x \in \Omega \subset \mathbb\{R\}^\{3\}, \ t \in \mathbb\{R\}\end\{equation*\} with Dirichlet boundary conditions, where $\omega$ is a time-dependent damping, $\mu$ is a time-dependent squared speed of propagation, and $V$ is a nonlinear potential of critical growth. Under structural assumptions on $\omega$ and $\mu$ we establish the existence of a pullback global attractor $\mathcal\{A\} = \mathcal\{A\}(t)$ in the sense of [1]. Under additional assumptions on $\mu$, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.},
author = {Di Plinio, Francesco, Duane, Gregory S., Temam, Roger},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {19-53},
publisher = {Unione Matematica Italiana},
title = {The 3-Dimensional Oscillon Equation},
url = {http://eudml.org/doc/290848},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Di Plinio, Francesco
AU - Duane, Gregory S.
AU - Temam, Roger
TI - The 3-Dimensional Oscillon Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 19
EP - 53
AB - On a bounded smooth domain $\Omega \subset \mathbb{R}^{3}$, we consider the generalized oscillon equation \begin{equation*}\partial_{tt} u(x, t) + \omega(t)\partial_{t}u(x, t) - \mu(t)\Delta u(x, t) + V'(u(x, t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^{3}, \ t \in \mathbb{R}\end{equation*} with Dirichlet boundary conditions, where $\omega$ is a time-dependent damping, $\mu$ is a time-dependent squared speed of propagation, and $V$ is a nonlinear potential of critical growth. Under structural assumptions on $\omega$ and $\mu$ we establish the existence of a pullback global attractor $\mathcal{A} = \mathcal{A}(t)$ in the sense of [1]. Under additional assumptions on $\mu$, which include the relevant physical cases, we obtain optimal regularity of the pull-back global attractor and finite-dimensionality of the kernel sections.
LA - eng
UR - http://eudml.org/doc/290848
ER -

References

top
  1. DI PLINIO, F. - DUANE, G. S. - TEMAM, R., Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst. Ser. A, 29 (2010), 141-167. Zbl1223.37100MR2725285DOI10.3934/dcds.2011.29.141
  2. DI PLINIO, F. - PATA, V., Robust exponential attractors for the strongly damped wave equation with memory. II, Russ. J. Math. Phys., 16 (2009), 61.73. Zbl1181.35283MR2486806DOI10.1134/S1061920809010038
  3. DI PLINIO, F. - PATA, V. - ZELIK, S., On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757-780. Zbl1149.35015MR2414334DOI10.1512/iumj.2008.57.3266
  4. FARHI, E. - GRAHAM, N. - KHEMANI, V. et al., An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D, 72 (2005), 101701. 
  5. FARHI, E. - GRAHAM, N. - GUTH, A. H. et al., Emergence of oscillons in an expanding background, Phys. Rev. D, 77 (2008), 085019. 
  6. FOIAS, C. - PRODI, G., Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. Zbl0176.54103MR223716
  7. FODOR, G. - FORGACS, P. - HORVATH, Z. - LUKACS, A., Small amplitude quasibreathers and oscillons, Phys. Rev. D, 78 (2005), 025003. 
  8. FODOR, G. - FORGACS, P. - MEZEI, M., Boson stars and oscillatons in an inflationary universe, Phys. Rev. D, 82 (2010), 044043. 
  9. GRASSELLI, M. - PATA, V., On the damped semilinear wave equation with critical exponent, Dynamical Systems and Differential Equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Systems (suppl.) (2003), 351-358. Zbl1058.35044MR2018135
  10. GRASSELLI, M. - PATA, V., Asymptotic behavior of a parabolic-hyperbolic system, Comm. Pure Appl. Anal., 3 (2004), 849-881. Zbl1079.35022MR2106302DOI10.3934/cpaa.2004.3.849
  11. HERTZBERG, M. P., Quantum radiation of oscillons, Phys. Rev. D, 82 (2010), 045022. 
  12. LIONS, J.-L. - PRODI, G., Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248 (1959), 3519-3521. Zbl0091.42105MR108964
  13. MANDELBROT, B. B., The fractal geometry of nature, W. H. Freeman and Company (San Francisco, 1982). Zbl0504.28001MR665254
  14. PRODI, G., On probability measures related to the Navier-Stokes equations in the 3-dimensional case, Air Force Res. Div. Conti. A. P., 61 (1961), 414-466. 
  15. SCHROEDER, M., Fractals, chaos, power laws, W. H. Freeman and Company (New York, 1991). MR1098021
  16. TEMAM, R., Infinite-dimensional dynamical systems in mechanics and physics, Springer (New York, 1997). Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3

NotesEmbed ?

top

You must be logged in to post comments.