Functional Solutions for Fluid Flows Through Porous Media
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 1, page 187-200
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCimatti, Giovanni. "Functional Solutions for Fluid Flows Through Porous Media." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 187-200. <http://eudml.org/doc/290851>.
@article{Cimatti2012,
abstract = {The Levy-Caccioppoli global inversion theorem is applied to prove the existence and uniqueness of functional solutions for a problem of flow of a viscous incompressible fluid in a porous medium when the viscosity and the thermal conductivity depend on the temperature. A method based on the Abel integral equation, for determining the dependence of the viscosity from the temperature is also proposed.},
author = {Cimatti, Giovanni},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {187-200},
publisher = {Unione Matematica Italiana},
title = {Functional Solutions for Fluid Flows Through Porous Media},
url = {http://eudml.org/doc/290851},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Cimatti, Giovanni
TI - Functional Solutions for Fluid Flows Through Porous Media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 187
EP - 200
AB - The Levy-Caccioppoli global inversion theorem is applied to prove the existence and uniqueness of functional solutions for a problem of flow of a viscous incompressible fluid in a porous medium when the viscosity and the thermal conductivity depend on the temperature. A method based on the Abel integral equation, for determining the dependence of the viscosity from the temperature is also proposed.
LA - eng
UR - http://eudml.org/doc/290851
ER -
References
top- ABEL, N. H., Résolution d'un problém de mécanique, Journal für die reine and angewandte Mathematik, herausgegeben von Crelle, 1, Berlin (1826), 97-101.
- AMBROSETTI, A. - PRODI, G., Nonlinear Analysis, Cambridge University Press, 1993.
- BEAR, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc.New York, 1988. Zbl1191.76002
- CACCIOPPOLI, R., Un principio di inversione per le corrispondenze funzionali, Atti Accad. Naz. Lincei, 16 (1932), 392-400.
- CIMATTI, G., On the functional solutions of a system of partial differential equations relevant in mathematical physics, Rend. Mat. Univ. Parma, 10 (2010), 423-439. Zbl1216.35022MR2789450
- CIMATTI, G., Application of the Abel integral equation to an inverse problem in thermoelectricity, Eur. Jour. Appl. Math (to appear). Zbl1180.80013MR2558705DOI10.1017/S095679250999009X
- GORENFLO, R. - VESSELLA, S., Abel Integral Equations, Springer-Verlag, Berlin, 1980. MR1095269DOI10.1007/BFb0084665
- LEVY, P., Sur les functions de lignes implicites, Bull. Soc. Mat. Fr., 48, 13-27. Zbl47.0381.01MR1504790
- NIELD, D. A. - BEJAN, A., Convection in Porous Media, Springer Verlag, Berlin, 1998. Zbl1268.76001MR1656781DOI10.1007/978-1-4757-3033-3
- PROTTER, M. - WEINBERGER, H., Maximus Principle in Differential Equations, Springer-Verlag, New York, 1963. MR762825DOI10.1007/978-1-4612-5282-5
- TONELLI, L., Su un problema di Abel, Math. Ann.99 (1928), 183-199. MR1512447DOI10.1007/BF01459094
- TRICOMI, F. G., Integral Equations, Interscience Publishers, London1957. MR94665
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.