Fractional Interior Differentiability of the Stress Velocities to Elastic Plastic Problems with Hardening
Jens Frehse; Maria Specovius-Neugebauer
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 3, page 469-494
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALBER, H.-D., Materials with memory, volume 1682 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998. Initial-boundary value problems for constitutive equations with internal variables. MR1619546DOI10.1007/BFb0096273
- ALBER, H.-D. - NESENENKO, S., Local H^{1}-regularity and H^{1/3-\delta}-regularity up to the boundary in time dependent viscoplasticity. Asymptot. Anal., 63 (3) (2009),151-187. MR2541125
- FREHSE, J. - LÖBACH, D., Hölder continuity for the displacements in isotropic and kinematic hardening with von Mises yield criterion. ZAMM Z. Angew. Math. Mech., 88 (8) (2008), 617-629. MR2442283DOI10.1002/zamm.200700137
- FREHSE, J. - LÖBACH, D., Regularity results for three-dimensional isotropic and kinematic hardening including boundary differentiability. Math. Models Methods Appl. Sci., 19 (12) (2009), 2231-2262. Zbl1248.35207MR2599660DOI10.1142/S0218202509004108
- FREHSE, J. - LÖBACH, D., Improved L^{p}-estimates for the strain velocities in hardening problems. GAMM-Mitteilungen, 34 (2011), 10-20. MR2843966DOI10.1002/gamm.201110002
- FREHSE, J. - SPECOVIUS-NEUGEBAUER, M., Fractional differentiability for the stress velocities to the solution of the Prandtl-Reuss problem. To appear in ZAMM Z. Angew. Math. Mech. Zbl1380.74019MR2897423DOI10.1002/zamm.201100023
- GRUBER, P. - KNEES, D. - NESENENKO, S. - THOMAS, M., Analytical and numerical aspects of time-dependent models with internal variables. ZAMM Z. Angew. Math. Mech., 90 (10-11, Special Issue: On the Occasion of Zenon Mroz' 80th Birthday) (2010), 861-902. MR2760795DOI10.1002/zamm.200900387
- JOHNSON, C., Existence theorems for plasticity problems. J. Math. Pures Appl. (9), 55 (4) (1976), 431-444. Zbl0351.73049MR438867
- JOHNSON, C., On plasticity with hardening. J. Math. Anal. Appl., 62(2) (1978), 325- 336. Zbl0373.73049MR489198DOI10.1016/0022-247X(78)90129-4
- KNEES, D., On global spatial regularity and convergence rates for time dependent elasto-plasticity. M3AS, 20 (2010), 1823-1858. Zbl1207.35083MR2735915DOI10.1142/S0218202510004805
- LIONS, J.-L. - MAGENES, E., Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Zbl0227.35001MR350177
- LÖBACH, D., On regularity for plasticity with hardening. Technical Report 388, Bonner Mathematische Schriften, 2008. MR2414270
- SERËGIN, G. A., Differential properties of solutions of evolution variational inequalities in the theory of plasticity. J. Math. Sci., 72 (6) (1994), 3449-3458. MR1317379DOI10.1007/BF01250434