On almost quasicontinuous functions

Ján Borsík

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 3, page 241-248
  • ISSN: 0862-7959

Abstract

top
A function f : X Y is said to be almost quasicontinuous at x X if x C I n t C f - 1 ( V ) for each neighbourhood V of f ( x ) . Some properties of these functions are investigated.

How to cite

top

Borsík, Ján. "On almost quasicontinuous functions." Mathematica Bohemica 118.3 (1993): 241-248. <http://eudml.org/doc/29087>.

@article{Borsík1993,
abstract = {A function $f:X\rightarrow Y$ is said to be almost quasicontinuous at $x\in X$ if $x\in C\left| Int C\right|f^\{-1\}(V)$ for each neighbourhood $V$ of $f(x)$. Some properties of these functions are investigated.},
author = {Borsík, Ján},
journal = {Mathematica Bohemica},
keywords = {separate almost continuity; almost quasicontinuous functions; almost quasicontinuity; $\beta $-continuity; separate almost quasicontinuity; separate almost continuity; almost quasicontinuous functions},
language = {eng},
number = {3},
pages = {241-248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost quasicontinuous functions},
url = {http://eudml.org/doc/29087},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Borsík, Ján
TI - On almost quasicontinuous functions
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 3
SP - 241
EP - 248
AB - A function $f:X\rightarrow Y$ is said to be almost quasicontinuous at $x\in X$ if $x\in C\left| Int C\right|f^{-1}(V)$ for each neighbourhood $V$ of $f(x)$. Some properties of these functions are investigated.
LA - eng
KW - separate almost continuity; almost quasicontinuous functions; almost quasicontinuity; $\beta $-continuity; separate almost quasicontinuity; separate almost continuity; almost quasicontinuous functions
UR - http://eudml.org/doc/29087
ER -

References

top
  1. M. E. Abd El-Monsef S. N. El-Deeb R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90. (1983) MR0828081
  2. D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32. (1986) Zbl0604.54002
  3. J. Borsík J. Doboš, 10.2307/44153699, Real Anal. Exchange 16 (1990-91), 292-305. (1990) MR1087494DOI10.2307/44153699
  4. A. M. Bruckner, Differentiation of real functions, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) Zbl0382.26002MR0507448
  5. Z. Frolík, Remarks concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11 (1961), 381-385. (1961) MR0133098
  6. K. R. Gentry H. B. Hoyle, Somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 5-12. (1971) MR0278269
  7. T. Husain, Almost continuous mappings, Comment. Math 10 (1966), 1-7. (1966) Zbl0138.17601MR0220256
  8. N. Levine, 10.1080/00029890.1963.11990039, Amer. Math. Monthly 70 (1963), 36-41. (1963) Zbl0113.16304MR0166752DOI10.1080/00029890.1963.11990039
  9. S. Marcus, 10.4064/cm-8-1-47-53, Colloq. Math. 8 (1961), 47-53. (1961) Zbl0099.04501MR0125915DOI10.4064/cm-8-1-47-53
  10. A. S. Mashour M. E. Abd Ei-Monsef S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Pгoc. Math. Phys. Soc. Egypt 53 (1982), 47-53. (1982) MR0830896
  11. O. Náther T. Neubrunn, On characterization of quasicontinuous multifunctions, Časopis Pěst. mat. 107 (1982), 294-300. (1982) MR0673055
  12. T. Neubrunn, A generalized continuity and product spaces, Math. Slovaca 26 (1976), 97-99. (1976) Zbl0318.54008MR0436064
  13. T. Neubrunn, Generalized continuity and separate continuity, Math. Slovaca 27 (1977), 307-314. (1977) Zbl0371.54022MR0536149
  14. A. Neubrunnová, On certain generalizations of the notion of continuity, Mat. časopis 23 (1973), 374-380. (1973) MR0339051
  15. A. Neubrunnová T. Šalát, On almost quasicontinuity, Math. Bohemica 117 (1992), 197-205. (1992) MR1165897
  16. T. Noiri V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie З4 (1990), 263-270. (1990) MR1087163
  17. J. C. Oxtoby, Cartesian product of Baire spaces, Fund. Math. 49 (1961), 156-170. (1961) MR0140638
  18. Z. Piotrowski, A survey of results concerning generalized continuity in topological spaces, Acta Math. Univ. Comenian. 52-53 (1987), 91-110. (1987) MR0989626

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.