Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 3, page 689-710
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topTerracini, Susanna. "Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 689-710. <http://eudml.org/doc/290874>.
@article{Terracini2012,
abstract = {Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.},
author = {Terracini, Susanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {689-710},
publisher = {Unione Matematica Italiana},
title = {Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali},
url = {http://eudml.org/doc/290874},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Terracini, Susanna
TI - Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 689
EP - 710
AB - Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.
LA - ita
UR - http://eudml.org/doc/290874
ER -
References
top- BARUTELLO, V. - FERRARIO, D. L. - TERRACINI, S., On the singularities of generalized solutions to n-body-type problems, Int. Math. Res. Not. IMRN (2008). Zbl1143.70005MR2439573DOI10.1093/imrn/rnn069
- BARUTELLO, V. - TERRACINI, S. - VERZINI, G., Entire Minimal Parabolic Trajectories: the planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., to appear (2011). Zbl1320.70006MR3005324DOI10.1007/s00205-012-0565-9
- BARUTELLO, V. - TERRACINI, S. - VERZINI, G., Entire Parabolic Trajectories as Minimal Phase Transitions, preprint (2011). Zbl1287.70007MR3148122DOI10.1007/s00526-012-0587-z
- BENCI, V., Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 401-412. Zbl0588.35007MR779876
- CHAZY, J., Sur certaines trajectoires du problème des n corps, Bulletin Astronomique, 35 (1918), 321-389.
- CHAZY, J., Sur l'allure du mouvement dans le problème de trois corps quand le temps crois indèfinimment, Ann. Sci. Ec. Norm. Sup., 39 (1922), 29-130. Zbl48.1074.04MR1509241
- CHEN, K.-C., Action-minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. Zbl1028.70009MR1847429DOI10.1007/s002050100146
- CHEN, K.-C., Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. Zbl1170.70006MR2415377DOI10.4007/annals.2008.167.325
- CHEN, K.-C., Variational constructions for some satellite orbits in periodic gravitational force fields, Amer. J. Math., 132 (2010), 681-709. Zbl1250.70012MR2666904DOI10.1353/ajm.0.0124
- CHENCINER, A., Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, Regul. Chaotic Dyn., 3 (1998), 93-106. Zbl0973.70011MR1704972DOI10.1070/rd1998v003n03ABEH000083
- CHENCINER, A. - MONTGOMERY, R., A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000). Zbl0987.70009MR1815704DOI10.2307/2661357
- CHIERCHIA, L. - PINZARI, G., The planetary N-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math. (2011). Zbl1316.70010MR2836051DOI10.1007/s00222-011-0313-z
- CLARKE, F. H. - VINTER, R. B., Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98. Zbl0563.49009MR779053DOI10.2307/1999689
- DA LUZ, A. - MADERNA, E., On the free time minimizers of the newtonian n-body problem, Math. Proc. Cambridge Philos. Soc., to appear (2011). Zbl1331.70035MR3177865DOI10.1017/S0305004113000650
- DEVANEY, R. L., Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251. Zbl0382.58015MR495360DOI10.1007/BF01403170
- DEVANEY, R. L., Singularities in classical mechanical systems, in Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), vol. 10 of Progr. Math., BirkhäuserBoston, Mass., 1981, 211-333. MR633766
- FATHI, A., Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2007.
- FATHI, A. - MADERNA, E., Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27. MR2346451DOI10.1007/s00030-007-2047-6
- FATHI, A. - SICONOLFI, A., Existence of critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. Zbl1061.58008MR2031431DOI10.1007/s00222-003-0323-6
- FERRARIO, D. L., Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., 179 (2006), 389-412. Zbl1138.70322MR2208321DOI10.1007/s00205-005-0396-z
- FERRARIO, D. L., Transitive decomposition of symmetry groups for the n-body problem, Adv. Math., 213 (2007), 763-784. Zbl1114.70013MR2332609DOI10.1016/j.aim.2007.01.009
- FERRARIO, D. L. - PORTALURI, A., On the dihedral n-body problem, Nonlinearity, 21 (2008), 1307-1321. Zbl1138.70007MR2422381DOI10.1088/0951-7715/21/6/009
- FERRARIO, D. L. - TERRACINI, S., On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. Zbl1068.70013MR2031430DOI10.1007/s00222-003-0322-7
- FUSCO, G. - GRONCHI, G. F. - NEGRINI, P., Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. Zbl1305.70023MR2819162DOI10.1007/s00222-010-0306-3
- GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
- GORDON, W. B., A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. Zbl0378.58006MR502484DOI10.2307/2373993
- GUTZWILLER, M. C., The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152. MR349203DOI10.1063/1.1666164
- GUTZWILLER, M. C., Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823. MR459107DOI10.1063/1.523310
- HALE, J. K. - KOÇAK, H., Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics, Springer-Verlag, New York, 1991. MR1138981DOI10.1007/978-1-4612-4426-4
- HULKOWER, N. D. - SAARI, D. G., On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, J. Differential Equations, 41 (1981), 27-43. Zbl0475.70010MR626619DOI10.1016/0022-0396(81)90051-6
- KLEIN, M. - KNAUF, A., Classical planar scattering by coulombic potentials, Lecture Notes in Physics Monographs, Springer-Verlag, Berlin, 1992. Zbl0783.70001MR3752660
- KNAUF, A., The n-centre problem of celestial mechanics for large energies, J. Eur. Math. Soc. (JEMS), 4 (2002), 1-114. Zbl1010.70011MR1891507DOI10.1007/s100970100037
- LEVI-CIVITA, T., Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. Zbl47.0837.01MR1555161DOI10.1007/BF02404404
- MADERNA, E. - VENTURELLI, A., Globally minimizing parabolic motions in the Newtonian N-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313. Zbl1253.70015MR2533929DOI10.1007/s00205-008-0175-8
- MADERNA, E., On weak kam theory for N-body problems, Ergod. Th. & Dynam. Sys., to appear (2011). MR2995654DOI10.1017/S0143385711000046
- MARCHAL, C., How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. Zbl1073.70011MR1956531DOI10.1023/A:1020128408706
- MARCHAL, C. - SAARI, D. G., On the final evolution of the n-body problem, J. Differential Equations, 20 (1976), 150-186. Zbl0336.70010MR416150DOI10.1016/0022-0396(76)90101-7
- MCGEHEE, R., Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227. Zbl0297.70011MR359459DOI10.1007/BF01390175
- MOECKEL, R., Chaotic dynamics near triple collision, Arch. Rational Mech. Anal., 107 (1989), 37-69. Zbl0697.70021MR1000223DOI10.1007/BF00251426
- MOORE, C., Braids in Classical Dynamics, Phys. Rev. Lett., 70, no. 24 (1993), 3675-3679. Zbl1050.37522MR1220207DOI10.1103/PhysRevLett.70.3675
- MOSER, J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure. Appl. Math., 23 (1970), 609-636. Zbl0193.53803MR269931DOI10.1002/cpa.3160230406
- POLLARD, H., The behavior of gravitational systems, J. Math. Mech., 17 (1967/1968), 601-611. Zbl0159.26102MR261826DOI10.1512/iumj.1968.17.17036
- POLLARD, H., Celestial mechanics, Mathematical Association of America, Washington, D. C., 1976. Zbl0353.70009MR434057
- SAARI, D. G., Expanding gravitational systems, Trans. Amer. Math. Soc., 156 (1971), 219-240. Zbl0215.57001MR275729DOI10.2307/1995609
- SAARI, D. G., The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem, J. Differential Equations, 55 (1984), 300-329. Zbl0571.70009MR766126DOI10.1016/0022-0396(84)90072-X
- SHIBAYAMA, M., Multiple symmetric periodic solutions to the 2n-body problem with equal masses, Nonlinearity, 19 (2006), 2441-2453. Zbl1260.70006MR2260271DOI10.1088/0951-7715/19/10/009
- SHIBAYAMA, M., Minimizing periodic orbits with regularizable collisions in the n-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841. Zbl1291.70049MR2771668DOI10.1007/s00205-010-0334-6
- TERRACINI, S. - VENTURELLI, A., Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. Zbl1111.70010MR2299759DOI10.1007/s00205-006-0030-8
- VENTURELLI, A., Une caractérisation variationelle des solutions de Lagrange du problème plan des trois corps, Comp. Rend. Acad. Sci. Paris, 332, Série I (2001), 641-644. Zbl1034.70007MR1841900DOI10.1016/S0764-4442(01)01788-8
- WHITTAKER, E. T., A treatise on the analytical dynamics of particles and rigid bodies: With an introduction to the problem of three bodies, 4th ed, Cambridge University Press (New York, 1959), xiv+456. MR103613
- WALDVOGEL, J., Quaternions for regularizing celestial mechanics: the right way, Celestial Mech. Dynam. Astronom., 102 (2008), 149-162. Zbl1154.70309MR2452904DOI10.1007/s10569-008-9124-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.