Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali

Susanna Terracini

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 3, page 689-710
  • ISSN: 0392-4041

Abstract

top
Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.

How to cite

top

Terracini, Susanna. "Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 689-710. <http://eudml.org/doc/290874>.

@article{Terracini2012,
abstract = {Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.},
author = {Terracini, Susanna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {689-710},
publisher = {Unione Matematica Italiana},
title = {Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali},
url = {http://eudml.org/doc/290874},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Terracini, Susanna
TI - Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 689
EP - 710
AB - Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.
LA - ita
UR - http://eudml.org/doc/290874
ER -

References

top
  1. BARUTELLO, V. - FERRARIO, D. L. - TERRACINI, S., On the singularities of generalized solutions to n-body-type problems, Int. Math. Res. Not. IMRN (2008). Zbl1143.70005MR2439573DOI10.1093/imrn/rnn069
  2. BARUTELLO, V. - TERRACINI, S. - VERZINI, G., Entire Minimal Parabolic Trajectories: the planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., to appear (2011). Zbl1320.70006MR3005324DOI10.1007/s00205-012-0565-9
  3. BARUTELLO, V. - TERRACINI, S. - VERZINI, G., Entire Parabolic Trajectories as Minimal Phase Transitions, preprint (2011). Zbl1287.70007MR3148122DOI10.1007/s00526-012-0587-z
  4. BENCI, V., Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 401-412. Zbl0588.35007MR779876
  5. CHAZY, J., Sur certaines trajectoires du problème des n corps, Bulletin Astronomique, 35 (1918), 321-389. 
  6. CHAZY, J., Sur l'allure du mouvement dans le problème de trois corps quand le temps crois indèfinimment, Ann. Sci. Ec. Norm. Sup., 39 (1922), 29-130. Zbl48.1074.04MR1509241
  7. CHEN, K.-C., Action-minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. Zbl1028.70009MR1847429DOI10.1007/s002050100146
  8. CHEN, K.-C., Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. Zbl1170.70006MR2415377DOI10.4007/annals.2008.167.325
  9. CHEN, K.-C., Variational constructions for some satellite orbits in periodic gravitational force fields, Amer. J. Math., 132 (2010), 681-709. Zbl1250.70012MR2666904DOI10.1353/ajm.0.0124
  10. CHENCINER, A., Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, Regul. Chaotic Dyn., 3 (1998), 93-106. Zbl0973.70011MR1704972DOI10.1070/rd1998v003n03ABEH000083
  11. CHENCINER, A. - MONTGOMERY, R., A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000). Zbl0987.70009MR1815704DOI10.2307/2661357
  12. CHIERCHIA, L. - PINZARI, G., The planetary N-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math. (2011). Zbl1316.70010MR2836051DOI10.1007/s00222-011-0313-z
  13. CLARKE, F. H. - VINTER, R. B., Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), 73-98. Zbl0563.49009MR779053DOI10.2307/1999689
  14. DA LUZ, A. - MADERNA, E., On the free time minimizers of the newtonian n-body problem, Math. Proc. Cambridge Philos. Soc., to appear (2011). Zbl1331.70035MR3177865DOI10.1017/S0305004113000650
  15. DEVANEY, R. L., Collision orbits in the anisotropic Kepler problem, Invent. Math., 45 (1978), 221-251. Zbl0382.58015MR495360DOI10.1007/BF01403170
  16. DEVANEY, R. L., Singularities in classical mechanical systems, in Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), vol. 10 of Progr. Math., BirkhäuserBoston, Mass., 1981, 211-333. MR633766
  17. FATHI, A., Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2007. 
  18. FATHI, A. - MADERNA, E., Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 1-27. MR2346451DOI10.1007/s00030-007-2047-6
  19. FATHI, A. - SICONOLFI, A., Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388. Zbl1061.58008MR2031431DOI10.1007/s00222-003-0323-6
  20. FERRARIO, D. L., Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., 179 (2006), 389-412. Zbl1138.70322MR2208321DOI10.1007/s00205-005-0396-z
  21. FERRARIO, D. L., Transitive decomposition of symmetry groups for the n-body problem, Adv. Math., 213 (2007), 763-784. Zbl1114.70013MR2332609DOI10.1016/j.aim.2007.01.009
  22. FERRARIO, D. L. - PORTALURI, A., On the dihedral n-body problem, Nonlinearity, 21 (2008), 1307-1321. Zbl1138.70007MR2422381DOI10.1088/0951-7715/21/6/009
  23. FERRARIO, D. L. - TERRACINI, S., On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. Zbl1068.70013MR2031430DOI10.1007/s00222-003-0322-7
  24. FUSCO, G. - GRONCHI, G. F. - NEGRINI, P., Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. Zbl1305.70023MR2819162DOI10.1007/s00222-010-0306-3
  25. GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
  26. GORDON, W. B., A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. Zbl0378.58006MR502484DOI10.2307/2373993
  27. GUTZWILLER, M. C., The anisotropic Kepler problem in two dimensions, J. Mathematical Phys., 14 (1973), 139-152. MR349203DOI10.1063/1.1666164
  28. GUTZWILLER, M. C., Bernoulli sequences and trajectories in the anisotropic Kepler problem, J. Mathematical Phys., 18 (1977), 806-823. MR459107DOI10.1063/1.523310
  29. HALE, J. K. - KOÇAK, H., Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics, Springer-Verlag, New York, 1991. MR1138981DOI10.1007/978-1-4612-4426-4
  30. HULKOWER, N. D. - SAARI, D. G., On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, J. Differential Equations, 41 (1981), 27-43. Zbl0475.70010MR626619DOI10.1016/0022-0396(81)90051-6
  31. KLEIN, M. - KNAUF, A., Classical planar scattering by coulombic potentials, Lecture Notes in Physics Monographs, Springer-Verlag, Berlin, 1992. Zbl0783.70001MR3752660
  32. KNAUF, A., The n-centre problem of celestial mechanics for large energies, J. Eur. Math. Soc. (JEMS), 4 (2002), 1-114. Zbl1010.70011MR1891507DOI10.1007/s100970100037
  33. LEVI-CIVITA, T., Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144. Zbl47.0837.01MR1555161DOI10.1007/BF02404404
  34. MADERNA, E. - VENTURELLI, A., Globally minimizing parabolic motions in the Newtonian N-body problem, Arch. Ration. Mech. Anal., 194 (2009), 283-313. Zbl1253.70015MR2533929DOI10.1007/s00205-008-0175-8
  35. MADERNA, E., On weak kam theory for N-body problems, Ergod. Th. & Dynam. Sys., to appear (2011). MR2995654DOI10.1017/S0143385711000046
  36. MARCHAL, C., How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. Zbl1073.70011MR1956531DOI10.1023/A:1020128408706
  37. MARCHAL, C. - SAARI, D. G., On the final evolution of the n-body problem, J. Differential Equations, 20 (1976), 150-186. Zbl0336.70010MR416150DOI10.1016/0022-0396(76)90101-7
  38. MCGEHEE, R., Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227. Zbl0297.70011MR359459DOI10.1007/BF01390175
  39. MOECKEL, R., Chaotic dynamics near triple collision, Arch. Rational Mech. Anal., 107 (1989), 37-69. Zbl0697.70021MR1000223DOI10.1007/BF00251426
  40. MOORE, C., Braids in Classical Dynamics, Phys. Rev. Lett., 70, no. 24 (1993), 3675-3679. Zbl1050.37522MR1220207DOI10.1103/PhysRevLett.70.3675
  41. MOSER, J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure. Appl. Math., 23 (1970), 609-636. Zbl0193.53803MR269931DOI10.1002/cpa.3160230406
  42. POLLARD, H., The behavior of gravitational systems, J. Math. Mech., 17 (1967/1968), 601-611. Zbl0159.26102MR261826DOI10.1512/iumj.1968.17.17036
  43. POLLARD, H., Celestial mechanics, Mathematical Association of America, Washington, D. C., 1976. Zbl0353.70009MR434057
  44. SAARI, D. G., Expanding gravitational systems, Trans. Amer. Math. Soc., 156 (1971), 219-240. Zbl0215.57001MR275729DOI10.2307/1995609
  45. SAARI, D. G., The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem, J. Differential Equations, 55 (1984), 300-329. Zbl0571.70009MR766126DOI10.1016/0022-0396(84)90072-X
  46. SHIBAYAMA, M., Multiple symmetric periodic solutions to the 2n-body problem with equal masses, Nonlinearity, 19 (2006), 2441-2453. Zbl1260.70006MR2260271DOI10.1088/0951-7715/19/10/009
  47. SHIBAYAMA, M., Minimizing periodic orbits with regularizable collisions in the n-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841. Zbl1291.70049MR2771668DOI10.1007/s00205-010-0334-6
  48. TERRACINI, S. - VENTURELLI, A., Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. Zbl1111.70010MR2299759DOI10.1007/s00205-006-0030-8
  49. VENTURELLI, A., Une caractérisation variationelle des solutions de Lagrange du problème plan des trois corps, Comp. Rend. Acad. Sci. Paris, 332, Série I (2001), 641-644. Zbl1034.70007MR1841900DOI10.1016/S0764-4442(01)01788-8
  50. WHITTAKER, E. T., A treatise on the analytical dynamics of particles and rigid bodies: With an introduction to the problem of three bodies, 4th ed, Cambridge University Press (New York, 1959), xiv+456. MR103613
  51. WALDVOGEL, J., Quaternions for regularizing celestial mechanics: the right way, Celestial Mech. Dynam. Astronom., 102 (2008), 149-162. Zbl1154.70309MR2452904DOI10.1007/s10569-008-9124-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.