Sopra un teorema d'intercambio

Susana Elena Trione

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1975)

  • Volume: 59, Issue: 5, page 357-361
  • ISSN: 0392-7881

Abstract

top
Let α , β 𝐂 , α + β = n + 2 h , α n + 2 h , β n + 2 h , h = 0 , 1 , . We prove under these conditions, the formula of interchange of the Fourier transformation of convolution of P f ( H α ( P ± i 0 , n ) H β ( P ± i 0 , n ) ) into the product of their Fourier trasforms: { P f ( H α ( P ± i 0 , n ) H β ( P ± i 0 , n ) ) } Λ = { H α ( P ± i 0 , n ) } Λ { H β ( P ± i 0 , n ) } Λ (see, for the definitions of these notations, formulae (1), (1') and Theorem). As an immediate consequence of formula (2) we obtain { P f ( ( P ± i 0 , n ) 1 2 t ( P ± i 0 , n ) 1 2 s ) } Λ = { ( P ± i 0 , n ) 1 2 t } Λ { ( P ± i 0 , n ) 1 2 s } Λ , where t + s = - n + 2 h , t 2 h , s 2 h , h = 0 , 1 , . It may be observed that, in the particular case p = n , q = 0 , the distributions H α ( P ± i 0 , n ) turn out to be the elliptic M. Riesz kernel of which they are "causal" ("anticausal") analogues; and from formula (18), we arrive at { P f ( r t r s ) } Λ = { r t } Λ { r s } Λ , which is valid for t + s = - n + 2 h , t 2 h , s 2 h , h = 0 , 1 , . The last formula is an extension of formula (VII, 8; 8), p. 271, obtained by L. Schwartz (cf. [6]).

How to cite

top

Trione, Susana Elena. "Sopra un teorema d'intercambio." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 59.5 (1975): 357-361. <http://eudml.org/doc/290891>.

@article{Trione1975,
abstract = {Let $\alpha,\beta \in \mathbf\{C\}$, $\alpha+\beta=n+2h$, $\alpha \ne n+2h$, $\beta \ne n+2h$, $h=0,1,\cdots$. We prove under these conditions, the formula of interchange of the Fourier transformation of convolution of $Pf (H_\{\alpha\}(P \pm i 0,n) \ast H_\{\beta\} (P \pm i 0,n))$ into the product of their Fourier trasforms: $$\\{ Pf (H\_\{\alpha\}(P \pm i 0,n) \ast H\_\{\beta\} (P \pm i 0, n)) \\}^\{\Lambda\} = \\{ H\_\{\alpha\}(P \pm i 0,n) \\}^\{\Lambda\} \cdot \\{ H\_\{\beta\}(P \pm i 0,n) \\}^\{\Lambda\}$$ (see, for the definitions of these notations, formulae (1), (1') and Theorem). As an immediate consequence of formula (2) we obtain $$\\{ Pf ((P \pm i 0,n)^\{\frac\{1\}\{2\}t\} \ast (P \pm i 0,n)^\{\frac\{1\}\{2\}s\}) \\}^\{\Lambda\} = \\{ (P \pm i 0,n)^\{\frac\{1\}\{2\}t\} \\}^\{\Lambda\} \cdot \\{ (P \pm i 0,n)^\{\frac\{1\}\{2\}s\} \\}^\{\Lambda\},$$ where $t+s =-n+2h$, $t \ne 2h$, $s \ne 2h$, $h = 0,1,\cdots$. It may be observed that, in the particular case $p=n$, $q = 0$, the distributions $H_\{\alpha\} (P \pm i 0, n)$ turn out to be the elliptic M. Riesz kernel of which they are "causal" ("anticausal") analogues; and from formula (18), we arrive at $\\{ Pf (r^\{t\} \ast r^\{s\}) \\}^\{\Lambda\} = \\{ r^\{t\}\\}^\{\Lambda\} \\{ r^\{s\} \\}^\{\Lambda\}$, which is valid for $t+s = - n + 2h$, $t \ne 2h$, $s \ne 2h$, $h = 0,1,\cdots$. The last formula is an extension of formula (VII, 8; 8), p. 271, obtained by L. Schwartz (cf. [6]).},
author = {Trione, Susana Elena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {11},
number = {5},
pages = {357-361},
publisher = {Accademia Nazionale dei Lincei},
title = {Sopra un teorema d'intercambio},
url = {http://eudml.org/doc/290891},
volume = {59},
year = {1975},
}

TY - JOUR
AU - Trione, Susana Elena
TI - Sopra un teorema d'intercambio
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1975/11//
PB - Accademia Nazionale dei Lincei
VL - 59
IS - 5
SP - 357
EP - 361
AB - Let $\alpha,\beta \in \mathbf{C}$, $\alpha+\beta=n+2h$, $\alpha \ne n+2h$, $\beta \ne n+2h$, $h=0,1,\cdots$. We prove under these conditions, the formula of interchange of the Fourier transformation of convolution of $Pf (H_{\alpha}(P \pm i 0,n) \ast H_{\beta} (P \pm i 0,n))$ into the product of their Fourier trasforms: $$\{ Pf (H_{\alpha}(P \pm i 0,n) \ast H_{\beta} (P \pm i 0, n)) \}^{\Lambda} = \{ H_{\alpha}(P \pm i 0,n) \}^{\Lambda} \cdot \{ H_{\beta}(P \pm i 0,n) \}^{\Lambda}$$ (see, for the definitions of these notations, formulae (1), (1') and Theorem). As an immediate consequence of formula (2) we obtain $$\{ Pf ((P \pm i 0,n)^{\frac{1}{2}t} \ast (P \pm i 0,n)^{\frac{1}{2}s}) \}^{\Lambda} = \{ (P \pm i 0,n)^{\frac{1}{2}t} \}^{\Lambda} \cdot \{ (P \pm i 0,n)^{\frac{1}{2}s} \}^{\Lambda},$$ where $t+s =-n+2h$, $t \ne 2h$, $s \ne 2h$, $h = 0,1,\cdots$. It may be observed that, in the particular case $p=n$, $q = 0$, the distributions $H_{\alpha} (P \pm i 0, n)$ turn out to be the elliptic M. Riesz kernel of which they are "causal" ("anticausal") analogues; and from formula (18), we arrive at $\{ Pf (r^{t} \ast r^{s}) \}^{\Lambda} = \{ r^{t}\}^{\Lambda} \{ r^{s} \}^{\Lambda}$, which is valid for $t+s = - n + 2h$, $t \ne 2h$, $s \ne 2h$, $h = 0,1,\cdots$. The last formula is an extension of formula (VII, 8; 8), p. 271, obtained by L. Schwartz (cf. [6]).
LA - eng
UR - http://eudml.org/doc/290891
ER -

References

top
  1. RIESZ, M. (1949) - L'intégrale de Riemann-Liouville et le problème de Cauchy, «Acta Mathematica», 81, 1-223. Zbl0033.27601MR30102DOI10.1007/BF02395016
  2. TRIONE, S. E. (1974) - Sopra alcune convoluzioni divergenti, «Rend. Accad. Naz. Lincei», ser. VIII, 57 (3-4), 143-146. MR420264
  3. GELFAND, I. M. e SHILOV, G. E. (1964) - Generalized Functions, Vol. I, Academic Press. New York. MR166596
  4. TRIONE, S. E. (1973) - Sobre una fórmula de L. Schwartz, «Revista de la Union Mat. Argentina», 26. MR373501
  5. TRIONE, S. E. (1972) - Tesis doctoral, «Sobre soluciones elementales causales de ecuaciones diferenciales en derivadas parciales con coeficientes constantes», F.C.E. y N., Universidad de Buenos Aires. 
  6. SCHWARTZ, L. (1966) - Théorie des Distributions, Paris, Hermann. MR209834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.