About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 1, page 55-80
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCresson, Jacky, and Raissy, Jasmin. "About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 55-80. <http://eudml.org/doc/290921>.
@article{Cresson2012,
abstract = {. - In this paper, we give a self-contained introduction to the mould formalism of J. Écalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We review results by J. Écalle and B. Vallet about the Trimmed form of local analytic diffeomorphisms of $\mathbb\{C\}^n$, for which we provide full proofs and details. This allows us to discuss a mould approach to the classical Poincaré-Dulac normal form for diffeomorphisms.},
author = {Cresson, Jacky, Raissy, Jasmin},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {55-80},
publisher = {Unione Matematica Italiana},
title = {About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms},
url = {http://eudml.org/doc/290921},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Cresson, Jacky
AU - Raissy, Jasmin
TI - About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 55
EP - 80
AB - . - In this paper, we give a self-contained introduction to the mould formalism of J. Écalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We review results by J. Écalle and B. Vallet about the Trimmed form of local analytic diffeomorphisms of $\mathbb{C}^n$, for which we provide full proofs and details. This allows us to discuss a mould approach to the classical Poincaré-Dulac normal form for diffeomorphisms.
LA - eng
UR - http://eudml.org/doc/290921
ER -
References
top- ARNOLD, V. I., Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Ed. Librairie du Globe, Paris (1996). MR898218
- BAIDER, A., Unique normal forms for vector fields and Hamiltonian, J. Diff. Eq., 78 (1989), 33-52. Zbl0689.70005MR986152DOI10.1016/0022-0396(89)90074-0
- CRESSON, J., Mould calculus and normalization of vector fields and diffeomorphisms, Lectures at the University of Pisa, Prépublications de l'I.H.É.S. (2006), pp. 27.
- CRESSON, J., Calcul Moulien, Ann. Fac. Sci. Toulouse Math., 18 (2009), 307-395. MR2562831
- ÉCALLE, J., Les fonctions résurgentes, Publ. Math. d'Orsay [Vol. 1: 81-05, Vol. 2: 81-06, Vol. 3: 85-05] 1981, 1985. MR522981
- ÉCALLE, J., Singularités non abordables par la géométrie, Ann. Inst. Fourier, 42 (1992), 73-164. Zbl0940.32013MR1162558
- ÉCALLE, J. - SCHLOMIUK, D., The nilpotent and distinguished form of resonant vector fields or diffeomorphisms, Ann. Inst. Fourier, 43 (1993) 1407-1483. Zbl0816.30005MR1275205
- ÉCALLE, J. - VALLET, B., Prenormalization, correction, and linearization of resonant vector fields or diffeomorphisms, Prepublication d'Orsay (1995), pp. 101
- ÉCALLE, J. - VALLET, B., Correction and linearization of resonant vector fields and diffeomorphisms, Math. Z., 229 (1998), 249-318. Zbl0921.32014MR1652158DOI10.1007/PL00004655
- MICHOR, P. W., Topics in differential geometry. Graduate Studies in Mathematics, 93. American Mathematical Society, Providence, RI (2008). Zbl1175.53002MR2428390DOI10.1090/gsm/093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.