Revisiting Pinors and Orientability
Loriano Bonora; Fabio Ferrari Ruffino; Raffaele Savelli
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 2, page 405-422
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBonora, Loriano, Ferrari Ruffino, Fabio, and Savelli, Raffaele. "Revisiting Pinors and Orientability." Bollettino dell'Unione Matematica Italiana 5.2 (2012): 405-422. <http://eudml.org/doc/290929>.
@article{Bonora2012,
abstract = {We study the relations between pin structures on a non-orientable even-dimensional manifold, with or without boundary, and pin structures on its orientable double cover, requiring the latter to be invariant under sheet-exchange. We show that there is not a simple bijection, but that the natural map induced by pull-back is neither injective nor surjective: we thus find the conditions to recover a full correspondence. We then consider the example of surfaces, with detailed computations for the real projective plane, the Klein bottle and the Moebius strip.},
author = {Bonora, Loriano, Ferrari Ruffino, Fabio, Savelli, Raffaele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {405-422},
publisher = {Unione Matematica Italiana},
title = {Revisiting Pinors and Orientability},
url = {http://eudml.org/doc/290929},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Bonora, Loriano
AU - Ferrari Ruffino, Fabio
AU - Savelli, Raffaele
TI - Revisiting Pinors and Orientability
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/6//
PB - Unione Matematica Italiana
VL - 5
IS - 2
SP - 405
EP - 422
AB - We study the relations between pin structures on a non-orientable even-dimensional manifold, with or without boundary, and pin structures on its orientable double cover, requiring the latter to be invariant under sheet-exchange. We show that there is not a simple bijection, but that the natural map induced by pull-back is neither injective nor surjective: we thus find the conditions to recover a full correspondence. We then consider the example of surfaces, with detailed computations for the real projective plane, the Klein bottle and the Moebius strip.
LA - eng
UR - http://eudml.org/doc/290929
ER -
References
top- BLAU, M. - DABROWSKI, L., Pin structures on manifolds quotiented by discrete groups, J. Geom. Phys., 6 (1989), 143-157. Zbl0681.53018MR1027301DOI10.1016/0393-0440(89)90005-3
- BOOSS-BAVNBEK, B. - WOJCIECHOWSKI, K. P., Elliptic boundary problems for Dirac operators, Birkhäuser (1993). Zbl0836.58041MR1233386DOI10.1007/978-1-4612-0337-7
- DABROWSKI, L. - PERCACCI, R., Diffeomorphisms, orientation, and pin structures in two dimensions, J. Math. Phys., 29 (1988), 580. Zbl0666.58010MR931460DOI10.1063/1.528051
- DABROWSKI, L. - PERCACCI, R., Spinors and diffeomorphisms, Comm. Math. Phys., 106 (1986), 691-704. MR860317
- DABROWSKI, L. - TRAUTMAN, A., Spinor structures on spheres and projective spaces, J. Math. Phys., 27 (1986), 2022. Zbl0599.53030MR850585DOI10.1063/1.527021
- HATCHER, A., Algebraic Topology, Cambridge University Press, 2002. MR1867354
- KAROUBI, M., Algèbres de Clifford and K-théorie, Ann. Sci. Éc. Norm. Sup. 4ème sér. 1 (1968), 161-270. MR238927
- KIRBY, R. C. - TAYLOR, L. R., Pin Structures on Low-Dimensional Manifolds, in Geometry of Low-Dimensonal Manifolds: 2 by S. K. Donaldson and C. B. Thomas, Cambridge University Press. MR1171915
- MILNOR, J. - STASHEFF, J. D., Characteristic Classes, Princeton University Press, 1974. MR440554
- RODRIGUES, J. P. - VAN TONDER, A., Spin structures for riemann surfaces with boundaries and cross-caps, Phys. Lett. B, 217 (1989), 85. MR977915DOI10.1016/0370-2693(89)91520-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.