Teoria dei campi differenziali ordinati

Francesco Lacava

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1975)

  • Volume: 59, Issue: 5, page 322-327
  • ISSN: 0392-7881

Abstract

top
In this paper we study the theory of ordered differential fields (CDO); in other words, the theory obtained adding the order axioms for a field to "differential field" 's axioms. If we consider a model K of such theory and we "forget" order, we know that such model is embedded in its differential closure. In a such closure, we can consider the set of real fields. Such a set has maximal elements (with respect to inclusion). We call CDO* the theory of so obtained maximal elements, for all K M o d (CDO). If we neglect derivation, models of CDO* are real closed and then ordered. So we can prove that CDO* is the model completion of CDO. We find the axioms of CDO*, too. Finally, we find a method for eliminating quantifiers (for CDO*) in the formulas containing only inequalities.

How to cite

top

Lacava, Francesco. "Teoria dei campi differenziali ordinati." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 59.5 (1975): 322-327. <http://eudml.org/doc/290937>.

@article{Lacava1975,
author = {Lacava, Francesco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {11},
number = {5},
pages = {322-327},
publisher = {Accademia Nazionale dei Lincei},
title = {Teoria dei campi differenziali ordinati},
url = {http://eudml.org/doc/290937},
volume = {59},
year = {1975},
}

TY - JOUR
AU - Lacava, Francesco
TI - Teoria dei campi differenziali ordinati
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1975/11//
PB - Accademia Nazionale dei Lincei
VL - 59
IS - 5
SP - 322
EP - 327
LA - ita
UR - http://eudml.org/doc/290937
ER -

References

top
  1. BOURBAKI, N. (1951) - Elements de mathématique, 12, 107. Paris. MR580296
  2. COHEN, P. J. (1969) - Decision procedures for real and p-adic fields. Communications on «Pure and Applied Mathematics», 22. Zbl0167.01502MR244025DOI10.1002/cpa.3160220202
  3. KAPLANSKI, I. (1957) - An introduction to differential algebra, Hermann, Paris. MR93654
  4. MANGANI, P. (1972-73) - Geometria algebrica, Dispense, Firenze. 
  5. RITT, J. F. (1950) - Differential algebra, New York. MR35763
  6. ROBINSON, A. (1965) - Introduction to model theory and to the metamathematics of algebra, North-Holland, Publ. Co. MR153570
  7. ROBINSON, A. (1972) - On the real closure of a Hardy field, Theory of sets and topology, Berlin. MR340225
  8. SACKS, G. (1972) - Saturated model theory, Benjamin. MR398817
  9. SEIDENBERG, A. (1956) - An elimination theory for differential algebra, University of California, Publication in Mathematics. Zbl0083.03302MR82487
  10. SEIDENBERG, A. - Some basic theorems in differential algebra, «Transactions of the American Mathematical Society», 73, 174-190. MR49174DOI10.2307/1990828
  11. TARSKI, A. (1951) - A decision method for elementary algebra and geometry, Berkeley and Los Angeles, Zbl0044.25102MR44472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.