On Numbers which are Orders of Nilpotent Groups Only

Alessio Russo

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 1, page 121-124
  • ISSN: 0392-4041

Abstract

top
In [T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra 300 (2006), 10-15] T. W. Müller characterizes the positive integers n satisfying the property that every group of order n is nilpotent of class bounded by a fixed positive integer c. In this article a different proof of the above result will be given.

How to cite

top

Russo, Alessio. "On Numbers which are Orders of Nilpotent Groups Only." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 121-124. <http://eudml.org/doc/290946>.

@article{Russo2012,
abstract = {In [T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra 300 (2006), 10-15] T. W. Müller characterizes the positive integers n satisfying the property that every group of order n is nilpotent of class bounded by a fixed positive integer c. In this article a different proof of the above result will be given.},
author = {Russo, Alessio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {121-124},
publisher = {Unione Matematica Italiana},
title = {On Numbers which are Orders of Nilpotent Groups Only},
url = {http://eudml.org/doc/290946},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Russo, Alessio
TI - On Numbers which are Orders of Nilpotent Groups Only
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 121
EP - 124
AB - In [T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra 300 (2006), 10-15] T. W. Müller characterizes the positive integers n satisfying the property that every group of order n is nilpotent of class bounded by a fixed positive integer c. In this article a different proof of the above result will be given.
LA - eng
UR - http://eudml.org/doc/290946
ER -

References

top
  1. DICKSON, L. E., Definitions of a group and a field by independent postulates, Trans. Math. Soc., 6 (1905), 198-204. Zbl36.0207.01MR1500706DOI10.2307/1986298
  2. GALLIAN, J. A. - MOULTON, D., When Z n is the only group of order n ?, Elem. Math., 48 (1993), 117-119. Zbl0829.20035MR1240612
  3. HUPPERT, B., Endliche Gruppen I, 2nd edition, Springer, Berlin (1967). MR224703
  4. JUNGNICKEL, D., On the uniqueness of the cyclic group of order n , Amer. Math. Monthly., 99 (1992), 545-547. Zbl0779.20011MR1166004DOI10.2307/2324062
  5. MÜLLER, T. W., An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra, 300 (2006), 10-15. MR2228629DOI10.1016/j.jalgebra.2005.10.013
  6. PAZDERSKI, G., Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math., 10 (1959), 331-343. MR114863DOI10.1007/BF01240807
  7. RÉDEI, L., Das schiefe Produkt in der Gruppentheorie, Comm. Math. Helv., 20 (1947), 225-264. MR21933DOI10.1007/BF02568131
  8. RÉDEI, L., Die endlichen einstufig nicht nilpotenten Gruppen, Publ. Math. Debrecen, 4 (1956), 303-324. MR78998
  9. ROBINSON, D. J. S., A course in the theory of groups, 2nd edition, Springer, New York (1996). MR1357169DOI10.1007/978-1-4419-8594-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.