Fixed point theorems for quasi-nonexpansive mappings

Kanhaya L. Singh

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1976)

  • Volume: 61, Issue: 5, page 354-363
  • ISSN: 0392-7881

How to cite

top

Singh, Kanhaya L.. "Fixed point theorems for quasi-nonexpansive mappings." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 61.5 (1976): 354-363. <http://eudml.org/doc/290996>.

@article{Singh1976,
author = {Singh, Kanhaya L.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {11},
number = {5},
pages = {354-363},
publisher = {Accademia Nazionale dei Lincei},
title = {Fixed point theorems for quasi-nonexpansive mappings},
url = {http://eudml.org/doc/290996},
volume = {61},
year = {1976},
}

TY - JOUR
AU - Singh, Kanhaya L.
TI - Fixed point theorems for quasi-nonexpansive mappings
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1976/11//
PB - Accademia Nazionale dei Lincei
VL - 61
IS - 5
SP - 354
EP - 363
LA - eng
UR - http://eudml.org/doc/290996
ER -

References

top
  1. BIANCHINI, R. M. T. (1972) - Su un problema di S. Reich riguardante la teoria dei punti fissi, «Boll. Un. Mat. Ital.», 5, 103-108. Zbl0249.54023MR308875
  2. BONSALL, F. F. (1962) - Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay. MR198173
  3. BROWDER, F. E. and PETRYSHYN, W. V. (1976) - Construction of fixed points of non linear mappings in Hilbert spaces, «Jour. Math. Anal, and Appl.», 20, 197-228. Zbl0153.45701MR217658DOI10.1016/0022-247X(67)90085-6
  4. BROWDER, F. E. (1965) - Nonexpansive nonlinear operators in a Banach space, «Proc. Nat. Acad. Sci. U.S.A.», 54, 1041-1044. Zbl0128.35801MR187120
  5. BROWDER, F. E. and PETRYSHYN, W. V. (1966) - The solution by iteration of nonlinear functional equations in Banach spaces, «Bull. Amer. Math. Soc.», 72, 571—575. Zbl0138.08202MR190745DOI10.1090/S0002-9904-1966-11544-6
  6. F). DE FIGUEIREDO, G. (1967) - Topics in nonlinear functional analysis, Lecture Series, No. 48, University of Maryland. 
  7. EDELSTEIN, M. (1974) - Fixed point theorems in uniformly convex Banach spaces, «Proc. Amer Math. Soc.», 44, 369-374. Zbl0286.47035MR358451DOI10.2307/2040439
  8. GOBEL, K. (1969) - An elementary proof of fixed point theorem of Browder and Kirk, «Mich. Math. Jour.», 16, 381-383. MR251604
  9. KANNAN, R. (1973) - Fixed point theorems in reflexive Banach spaces, «Proc. Amer. Math. Soc.», 38, 111-118. Zbl0265.47038MR313896DOI10.2307/2038781
  10. KIRK, W. A. (1965) - A fixed point theorem for mappings which do not increase distances, «Amer. Math. Monthly», 72, 1004-1006. Zbl0141.32402MR189009DOI10.2307/2313345
  11. KRASNOSELSKII, M. A. (1965) - Two remarks on the method of successive approximations, «Uspehi Math. Nauk (N.S.)», 10, No. (163), 123-127. MR68119
  12. OPIAL, Z. (1967) - Nonexpansive and monotone mappings in Banach spaces, Brown University, Lecture Notes. 
  13. OPIAL, Z. (1967) - Weak convergence of sequence of successive approximations for nonexpansive mappings, «Bull. Amer. Math. Soc.», 73, 591-597. Zbl0179.19902MR211301DOI10.1090/S0002-9904-1967-11761-0
  14. REICH, S. (1971) - Kannan's fixed point theorems, «Boll. Un. Mat. Ital.», 4, 1-11. Zbl0219.54042MR305163
  15. REICH, S. (1971) - Some remarks concernings contraction mappings, «Canad. Math. Bull.», 14, 121-124. Zbl0211.26002MR292057DOI10.4153/CMB-1971-024-9
  16. SINGH, K. L. (1969) - Some further extensions of Banachs contraction principle, «Rivista di Matematica Univ. di Parma», 2 (10), 139—155. Zbl0216.19404MR296929
  17. SINGH, K. L. (1970) - Nonexpansive mappings in Banach spaces, II, «Bull. Math. Rumania», 14 (2) 237-246. MR326513
  18. SINGH, K. L. and SRIVASTAVA, S. (1974) - Construction of fixed points for quasi-non-expansive mappings, II, «Bull. Math. Rumania», 18 (3-4), 367-378. MR461228
  19. SOARDI, P. (1971) - Su un problema di punto unito di S. Reich, «Boll. Un. Mat. Ital.», 4, 841-845. Zbl0241.47040MR301583

NotesEmbed ?

top

You must be logged in to post comments.