Teoremi di esistenza al passaggio attraverso valori critici

Lamberto Cesari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1976)

  • Volume: 60, Issue: 3, page 198-201
  • ISSN: 0392-7881

Abstract

top
Under sole qualitative hypotheses in the large the author has proved the existence of equibounded solutions to nonlinear operational equations in a Hilbert space when a parameter describes an interval containing a point of resonance. Applications have been made to problems of periodic solutions, and to elliptic problems.

How to cite

top

Cesari, Lamberto. "Teoremi di esistenza al passaggio attraverso valori critici." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 60.3 (1976): 198-201. <http://eudml.org/doc/291070>.

@article{Cesari1976,
author = {Cesari, Lamberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {3},
number = {3},
pages = {198-201},
publisher = {Accademia Nazionale dei Lincei},
title = {Teoremi di esistenza al passaggio attraverso valori critici},
url = {http://eudml.org/doc/291070},
volume = {60},
year = {1976},
}

TY - JOUR
AU - Cesari, Lamberto
TI - Teoremi di esistenza al passaggio attraverso valori critici
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1976/3//
PB - Accademia Nazionale dei Lincei
VL - 60
IS - 3
SP - 198
EP - 201
LA - ita
UR - http://eudml.org/doc/291070
ER -

References

top
  1. CESARI, L. (1963) — Functional analysis and periodic solutions of nonlinear differential equations, «Contributions to Differential Equations», 1, 149-187, Wiley. MR151678
  2. CESARI, L. (1975) - Alternative methods in nonlinear analysis. International Conference on Differential Equations, Los Angeles. Acad. Press ( Antosiewicz ed.), 95-148. Zbl0316.47039
  3. CESARI, L. (1976) - Functional analysis, nonlinear differential equations, and the alternative method. (Un corso di lezioni al «Summer Institute» alla Michigan State University, East Lansing, Michigan, Giugno 1975). Functional Analysis and Nonlinear Differential Equations. Academic Press (Cesari, Kannar, Schuur eds.), 1976. MR477808
  4. CESARI, L. e KANNAN, R. (1976) — An abstract existence theorem at resonance, «Proc. Amer. Math. Soc.». In corso di stampa. MR448180DOI10.2307/2041793
  5. FIGUEIREDO, DE (1975) - The Dirichlet problem for nonlinear elliptic equations: a Hilbert space approach. Partial Differential Equations and Related Topics. ( Dold and Eckman ed.) Springer Verlag, «Lecture Notes Math.», 446, 144-165. MR437924
  6. KANNAN, R. e MCKENNA, P. J. - Problems at resonance in an abstract formulation, «Boll. Un. Mat. Italiana». In corso di stampa. 
  7. LANDESMAN, E. M. e LAZER, A. C. (1970) - Nonlinear perturbations of linear elliptic boundary balue problems at resonance, «Journ. Math. Mech.», 19, 609-623. Zbl0193.39203MR267269
  8. LAZER, A. C. e LEACH, D. E. (1969) — Bounded perturbations of forced harmonic oscillations at resonance, «Annali di Matematica Pura e Appl.», 72, 49-68. Zbl0194.12003MR249731DOI10.1007/BF02410787
  9. NECAS, J. (1973) - On the range of nonlinear operators with linear asymptotes which are not invertible, «Comm. Math. Univ. Caroliniensis», 14, 63-72. Zbl0257.47032MR318995
  10. SHAW, H. (1976) - A nonlinear elliptic boundary value problem at resonance, «Journ. Diff. Equations». In corso di stampa MR463687DOI10.1016/0022-0396(77)90084-5
  11. WILLIAMS, S. A. (1970) - A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, «Journ. Diff. Equations», 8, 580-586. Zbl0209.13003MR267267DOI10.1016/0022-0396(70)90031-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.