A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces

Andrea Schiaffino

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1976)

  • Volume: 61, Issue: 3-4, page 222-228
  • ISSN: 0392-7881

How to cite

top

Schiaffino, Andrea. "A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 61.3-4 (1976): 222-228. <http://eudml.org/doc/291157>.

@article{Schiaffino1976,
author = {Schiaffino, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {10},
number = {3-4},
pages = {222-228},
publisher = {Accademia Nazionale dei Lincei},
title = {A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces},
url = {http://eudml.org/doc/291157},
volume = {61},
year = {1976},
}

TY - JOUR
AU - Schiaffino, Andrea
TI - A compactness method for a class of semi-linear Volterra integro-differential equations in Banach spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1976/10//
PB - Accademia Nazionale dei Lincei
VL - 61
IS - 3-4
SP - 222
EP - 228
LA - eng
UR - http://eudml.org/doc/291157
ER -

References

top
  1. BARBU, V. (1973) - Integrodifferential equations in Hilbert spaces, «Anal. Stiin. ale Univ. ‘Al. I. Cuza’, Din. Iași», 19. MR402443
  2. BARBU, V. (1976) — Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing and Editura Academiei, Leyden-Bucaresti. Zbl0328.47035MR390843
  3. BARBU, V. - Nonlinear Volterra Integrodifferential Equations in Hilbert Space (to appear on «Sem. Matem. Univ.», Bari). Zbl0322.45012
  4. CRANDALL, M. G., LONDEN, S. O. and NOHEL, J. A. (1975) - An abstract nonlinear Volterra integrodifferential equation, «M.R.C. Tech. Summary Report, Univ. of Wisconsin», December. Zbl0395.45023
  5. DAFERMOS, C. M. (1970) - An abstract Volterra equation with applications to linear viscoelasticity, «J. Differential Equations», 7, 554-569. Zbl0212.45302MR259670DOI10.1016/0022-0396(70)90101-4
  6. DA PRATO, G. and GRISVARD, P. (1975) - Sommes d'operateurs linéaires et equations differentielles operationelles, «J. Math, pures et appl.», 54. MR442749
  7. MACCAMY, R. C. - Stability theorems for a class of functional differential equations, «S.I.A.M., J. Math. Anal.» (to appear). MR404818DOI10.1137/0130050
  8. WONG, J. S. - A nonlinear integro-partial differential equation arising from viscoelasticity (to appear). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.