Description of a class of differential equations with set-valued solutions. Nota I

Michal Kisielewicz

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1975)

  • Volume: 58, Issue: 2, page 158-162
  • ISSN: 0392-7881

How to cite

top

Kisielewicz, Michal. "Description of a class of differential equations with set-valued solutions. Nota I." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 58.2 (1975): 158-162. <http://eudml.org/doc/291253>.

@article{Kisielewicz1975,
author = {Kisielewicz, Michal},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {2},
number = {2},
pages = {158-162},
publisher = {Accademia Nazionale dei Lincei},
title = {Description of a class of differential equations with set-valued solutions. Nota I},
url = {http://eudml.org/doc/291253},
volume = {58},
year = {1975},
}

TY - JOUR
AU - Kisielewicz, Michal
TI - Description of a class of differential equations with set-valued solutions. Nota I
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1975/2//
PB - Accademia Nazionale dei Lincei
VL - 58
IS - 2
SP - 158
EP - 162
LA - eng
UR - http://eudml.org/doc/291253
ER -

References

top
  1. ALEXIEWICZ, A. and ORLICZ, W. (1956) - Some remarks on the existence and uniqueness of solutions of the hyperbolic equation z x y ′′ = f ( x , y , z , z x , z y ) , «Stud. Math.», 15, 201-215. Zbl0070.09204MR79711DOI10.4064/sm-15-2-201-215
  2. DE BLASI, F. S. and JERVOLINO, F. (1969) - Equazioni differenziali con soluzioni a valore compatto convesso, «Boll, U.M.I.», (4) 2, 491-501. MR265653
  3. BRANDÃO, A. I., PINTO, LEOPES, DE BLASI, F. S. and JERVOLINO, F. (1970) - Uniqueness and Existence Theorems for Differential Equations with Compact Convex Solutions, «Boll. U.M.I.» (4), 47-54. MR259306
  4. HUKUHARA, M. (1967) - Sur l'Application Semi-continue dont la Valeur est un Compact Convexe, «Funk. Ekv.», 10, 43-66. Zbl0155.19402MR222856
  5. HUKUHARA, M. (1967) - Intégration des Applications Measurables dont la Valeur est un Compact Convexe, «Funk. Ekv.», 10, 205-223. Zbl0161.24701MR226503
  6. ORLICZ, W. (1932) - Zur Theorie der Differentialgleichung y = f ( t , y ) , «Bull, de Acad. Pol. des Sciences», Ser. A, 221-228. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.