On complex submanifolds of complex projective space with constant scalar curvature

Bang-yen Chen; Huei-shyong Lue

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1975)

  • Volume: 58, Issue: 2, page 172-173
  • ISSN: 0392-7881

How to cite

top

Chen, Bang-yen, and Lue, Huei-shyong. "On complex submanifolds of complex projective space with constant scalar curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 58.2 (1975): 172-173. <http://eudml.org/doc/291262>.

@article{Chen1975,
author = {Chen, Bang-yen, Lue, Huei-shyong},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {2},
number = {2},
pages = {172-173},
publisher = {Accademia Nazionale dei Lincei},
title = {On complex submanifolds of complex projective space with constant scalar curvature},
url = {http://eudml.org/doc/291262},
volume = {58},
year = {1975},
}

TY - JOUR
AU - Chen, Bang-yen
AU - Lue, Huei-shyong
TI - On complex submanifolds of complex projective space with constant scalar curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1975/2//
PB - Accademia Nazionale dei Lincei
VL - 58
IS - 2
SP - 172
EP - 173
LA - eng
UR - http://eudml.org/doc/291262
ER -

References

top
  1. CHEN, B.—Y. (1973) - Geometry of Submanifolds, Mercel Dekker, New York. MR353212
  2. CHEN, B.-Y. and LUE, H.-S. - Differential geometry of S O ( n + 2 ) / S O ( 2 ) × S O ( n ) , Geometriae Dedicata (to appear). MR415544DOI10.1007/BF00148759
  3. CHEN, B.-Y. and OGIUE, K. (1973) - Some extrinsic results for Kaehler submanifolds, «Tamkang J. Math.», 4, 207-213. Zbl0283.53027MR353220
  4. CHEN, B.-Y. and OGIUE, K. (1974) - A characterization of complex spheres, «Michigan Math. J.», 21, 231-232. Zbl0295.53029MR358637
  5. CHERN, S.-S. (1967) - Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, «J. Differential Geometry», 1, 21-31. MR219013
  6. OGIUE, K. (1974) - Differential geometry of Kaehler submanifolds, «Advances in Math.», 13, 73-114. Zbl0275.53035MR346719DOI10.1016/0001-8708(74)90066-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.