On complex submanifolds of complex projective space with constant scalar curvature

Bang-yen Chen; Huei-shyong Lue

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1975)

  • Volume: 58, Issue: 2, page 172-173
  • ISSN: 0392-7881

How to cite

top

Chen, Bang-yen, and Lue, Huei-shyong. "On complex submanifolds of complex projective space with constant scalar curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 58.2 (1975): 172-173. <http://eudml.org/doc/291262>.

@article{Chen1975,
author = {Chen, Bang-yen, Lue, Huei-shyong},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {2},
number = {2},
pages = {172-173},
publisher = {Accademia Nazionale dei Lincei},
title = {On complex submanifolds of complex projective space with constant scalar curvature},
url = {http://eudml.org/doc/291262},
volume = {58},
year = {1975},
}

TY - JOUR
AU - Chen, Bang-yen
AU - Lue, Huei-shyong
TI - On complex submanifolds of complex projective space with constant scalar curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1975/2//
PB - Accademia Nazionale dei Lincei
VL - 58
IS - 2
SP - 172
EP - 173
LA - eng
UR - http://eudml.org/doc/291262
ER -

References

top
  1. CHEN, B.—Y. (1973) - Geometry of Submanifolds, Mercel Dekker, New York. MR353212
  2. CHEN, B.-Y. and LUE, H.-S. - Differential geometry of SO(n+2)/SO(2)\times SO(n), Geometriae Dedicata (to appear). MR415544DOI10.1007/BF00148759
  3. CHEN, B.-Y. and OGIUE, K. (1973) - Some extrinsic results for Kaehler submanifolds, «Tamkang J. Math.», 4, 207-213. Zbl0283.53027MR353220
  4. CHEN, B.-Y. and OGIUE, K. (1974) - A characterization of complex spheres, «Michigan Math. J.», 21, 231-232. Zbl0295.53029MR358637
  5. CHERN, S.-S. (1967) - Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, «J. Differential Geometry», 1, 21-31. MR219013
  6. OGIUE, K. (1974) - Differential geometry of Kaehler submanifolds, «Advances in Math.», 13, 73-114. Zbl0275.53035MR346719DOI10.1016/0001-8708(74)90066-8

NotesEmbed ?

top

You must be logged in to post comments.