Decoupling normalizing transformations and local stabilization of nonlinear systems
Mathematica Bohemica (1996)
- Volume: 121, Issue: 3, page 225-248
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNikitin, S.. "Decoupling normalizing transformations and local stabilization of nonlinear systems." Mathematica Bohemica 121.3 (1996): 225-248. <http://eudml.org/doc/29142>.
@article{Nikitin1996,
abstract = {The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.},
author = {Nikitin, S.},
journal = {Mathematica Bohemica},
keywords = {nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback; nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback},
language = {eng},
number = {3},
pages = {225-248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Decoupling normalizing transformations and local stabilization of nonlinear systems},
url = {http://eudml.org/doc/29142},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Nikitin, S.
TI - Decoupling normalizing transformations and local stabilization of nonlinear systems
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 225
EP - 248
AB - The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.
LA - eng
KW - nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback; nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback
UR - http://eudml.org/doc/29142
ER -
References
top- D. Aeyels, Stabilization of a class of nonlinear systems by a smooth feedback contгol, Systems Contгol Lett. 5 (1985), 289-294. (1985) MR0791542
- A. Andreini A. Baccietti G. Stefani, 10.1016/0167-6911(88)90014-X, Systems Control Lett. 10 (1988), 251-256. (1988) MR0936621DOI10.1016/0167-6911(88)90014-X
- S. Behtash S. Sastry, 10.1109/9.1259, IEEE Tгans. Automat. Control 33 (1988), 585-590. (1988) MR0940781DOI10.1109/9.1259
- J. Carr, Applications of centгe manifold theoгy, Springer, New York, 1981. (1981) MR0635782
- E. Coddington, N. Levinson, Theoгy of ordinary differential equations, McGraw-Hill, New York, 1955. (1955) MR0069338
- M. C. Joshi, R. K. Bose, Some topics in nonlineaг functional analysis, John Wiley and Sons, New York, 1985. (1985) MR0806351
- V. Jurdjevic J. Quin, 10.1016/0022-0396(78)90135-3, J. Diffeгential Equations 28 (1978), 381-389. (1978) MR0494275DOI10.1016/0022-0396(78)90135-3
- A. Kelley, 10.1016/0022-0396(67)90016-2, J. Differential Equations 3 (1967), 546-570. (1967) MR0221044DOI10.1016/0022-0396(67)90016-2
- N. Kalouptsidis J. Tsinias, 10.1109/TAC.1984.1103518, IEEE Trans. Automat. Control 29 (1984), 365-367. (1984) MR0742368DOI10.1109/TAC.1984.1103518
- E. P. Ryan N. J. Buckingham, 10.1109/TAC.1983.1103323, IEEE Trans. Automat. Control 28 (1983), 863-864. (1983) DOI10.1109/TAC.1983.1103323
- V. I. Zubov, Methods of A.M. Liapunov and their applications, Noordhoff, 1964. (1964) MR0179428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.