Decoupling normalizing transformations and local stabilization of nonlinear systems

S. Nikitin

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 3, page 225-248
  • ISSN: 0862-7959

Abstract

top
The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.

How to cite

top

Nikitin, S.. "Decoupling normalizing transformations and local stabilization of nonlinear systems." Mathematica Bohemica 121.3 (1996): 225-248. <http://eudml.org/doc/29142>.

@article{Nikitin1996,
abstract = {The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.},
author = {Nikitin, S.},
journal = {Mathematica Bohemica},
keywords = {nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback; nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback},
language = {eng},
number = {3},
pages = {225-248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Decoupling normalizing transformations and local stabilization of nonlinear systems},
url = {http://eudml.org/doc/29142},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Nikitin, S.
TI - Decoupling normalizing transformations and local stabilization of nonlinear systems
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 225
EP - 248
AB - The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.
LA - eng
KW - nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback; nonlinear system; stabilization; center manifold; normalizing transformation; smooth feedback
UR - http://eudml.org/doc/29142
ER -

References

top
  1. D. Aeyels, Stabilization of a class of nonlinear systems by a smooth feedback contгol, Systems Contгol Lett. 5 (1985), 289-294. (1985) MR0791542
  2. A. Andreini A. Baccietti G. Stefani, 10.1016/0167-6911(88)90014-X, Systems Control Lett. 10 (1988), 251-256. (1988) MR0936621DOI10.1016/0167-6911(88)90014-X
  3. S. Behtash S. Sastry, 10.1109/9.1259, IEEE Tгans. Automat. Control 33 (1988), 585-590. (1988) MR0940781DOI10.1109/9.1259
  4. J. Carr, Applications of centгe manifold theoгy, Springer, New York, 1981. (1981) MR0635782
  5. E. Coddington, N. Levinson, Theoгy of ordinary differential equations, McGraw-Hill, New York, 1955. (1955) MR0069338
  6. M. C. Joshi, R. K. Bose, Some topics in nonlineaг functional analysis, John Wiley and Sons, New York, 1985. (1985) MR0806351
  7. V. Jurdjevic J. Quin, 10.1016/0022-0396(78)90135-3, J. Diffeгential Equations 28 (1978), 381-389. (1978) MR0494275DOI10.1016/0022-0396(78)90135-3
  8. A. Kelley, 10.1016/0022-0396(67)90016-2, J. Differential Equations 3 (1967), 546-570. (1967) MR0221044DOI10.1016/0022-0396(67)90016-2
  9. N. Kalouptsidis J. Tsinias, 10.1109/TAC.1984.1103518, IEEE Trans. Automat. Control 29 (1984), 365-367. (1984) MR0742368DOI10.1109/TAC.1984.1103518
  10. E. P. Ryan N. J. Buckingham, 10.1109/TAC.1983.1103323, IEEE Trans. Automat. Control 28 (1983), 863-864. (1983) DOI10.1109/TAC.1983.1103323
  11. V. I. Zubov, Methods of A.M. Liapunov and their applications, Noordhoff, 1964. (1964) MR0179428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.