On constructions of isometric embeddings of nonseparable L p spaces, 0 p 2

Jolanta Grala-Michalak; Artur Michalak

Commentationes Mathematicae (2008)

  • Volume: 48, Issue: 2
  • ISSN: 2080-1211

Abstract

top
Let J be an infinite set. Let X be a real or complex σ -order continuous rearrangement invariant quasi-Banach function space over ( { 0 , 1 } J , J , λ J ) , the product of J copies of the measure space ( { 0 , 1 } , 2 0 , 1 , 1 2 δ 0 + 1 2 δ 1 ) . We show that if 0 p 2 and X contains a function f with the decreasing rearrangement f such that f ( t ) t - 1 p for every t ( 0 , 1 ) , then it contains an isometric copy of the Lebesgue space L p ( λ J ) . Moreover, if X contains a function f such that f ( t ) | ln ( t ) | for every t ( 0 , 1 ) , then it contains an isometric copy of the Lebesgue space L 2 ( λ J ) .

How to cite

top

Jolanta Grala-Michalak, and Artur Michalak. "On constructions of isometric embeddings of nonseparable $L^p$ spaces, $0 p \le 2$." Commentationes Mathematicae 48.2 (2008): null. <http://eudml.org/doc/291949>.

@article{JolantaGrala2008,
abstract = {Let $J$ be an infinite set. Let $X$ be a real or complex $\sigma $-order continuous rearrangement invariant quasi-Banach function space over $(\lbrace 0, 1\rbrace ^J,\ \mathcal \{B\}^J,\ \lambda _J)$, the product of $J$ copies of the measure space $(\lbrace 0, 1\rbrace ,\ 2^\{0,1\},\ \frac\{1\}\{2\} \delta _0 + \frac\{1\}\{2\}\delta _1)$. We show that if $0 p 2$ and $X$ contains a function $f$ with the decreasing rearrangement $f^∗$ such that $f^∗(t) t^\{-\frac\{1\}\{p\}\}$ for every $t\in (0, 1)$, then it contains an isometric copy of the Lebesgue space $L^p (\lambda _J)$. Moreover, if $X$ contains a function $f$ such that $f^∗(t) \sqrt\{|\text\{ln\}(t)|\}$ for every $t\in (0, 1)$, then it contains an isometric copy of the Lebesgue space $L^2(\lambda _J)$.},
author = {Jolanta Grala-Michalak, Artur Michalak},
journal = {Commentationes Mathematicae},
keywords = {$L^p$-spaces},
language = {eng},
number = {2},
pages = {null},
title = {On constructions of isometric embeddings of nonseparable $L^p$ spaces, $0 p \le 2$},
url = {http://eudml.org/doc/291949},
volume = {48},
year = {2008},
}

TY - JOUR
AU - Jolanta Grala-Michalak
AU - Artur Michalak
TI - On constructions of isometric embeddings of nonseparable $L^p$ spaces, $0 p \le 2$
JO - Commentationes Mathematicae
PY - 2008
VL - 48
IS - 2
SP - null
AB - Let $J$ be an infinite set. Let $X$ be a real or complex $\sigma $-order continuous rearrangement invariant quasi-Banach function space over $(\lbrace 0, 1\rbrace ^J,\ \mathcal {B}^J,\ \lambda _J)$, the product of $J$ copies of the measure space $(\lbrace 0, 1\rbrace ,\ 2^{0,1},\ \frac{1}{2} \delta _0 + \frac{1}{2}\delta _1)$. We show that if $0 p 2$ and $X$ contains a function $f$ with the decreasing rearrangement $f^∗$ such that $f^∗(t) t^{-\frac{1}{p}}$ for every $t\in (0, 1)$, then it contains an isometric copy of the Lebesgue space $L^p (\lambda _J)$. Moreover, if $X$ contains a function $f$ such that $f^∗(t) \sqrt{|\text{ln}(t)|}$ for every $t\in (0, 1)$, then it contains an isometric copy of the Lebesgue space $L^2(\lambda _J)$.
LA - eng
KW - $L^p$-spaces
UR - http://eudml.org/doc/291949
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.