L -groups versus k -groups

Roman Frič

Mathematica Bohemica (1993)

  • Volume: 118, Issue: 2, page 113-121
  • ISSN: 0862-7959

Abstract

top
We investigate free groups over sequential spaces. In particular, we show that the free k -group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is ω 1 .

How to cite

top

Frič, Roman. "$L$-groups versus $k$-groups." Mathematica Bohemica 118.2 (1993): 113-121. <http://eudml.org/doc/29203>.

@article{Frič1993,
abstract = {We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega _1$.},
author = {Frič, Roman},
journal = {Mathematica Bohemica},
keywords = {sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order; sequential convergence; FLUSH-convergence; free -group; free sequential group; sequential space; sequential order},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L$-groups versus $k$-groups},
url = {http://eudml.org/doc/29203},
volume = {118},
year = {1993},
}

TY - JOUR
AU - Frič, Roman
TI - $L$-groups versus $k$-groups
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 2
SP - 113
EP - 121
AB - We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega _1$.
LA - eng
KW - sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order; sequential convergence; FLUSH-convergence; free -group; free sequential group; sequential space; sequential order
UR - http://eudml.org/doc/29203
ER -

References

top
  1. R. Engelking, General topology, PWN, Warszawa, 1977. (1977) Zbl0373.54002MR0500780
  2. T. H. Fay E. T. Ordman B. V. Smith-Thomas, 10.1016/0016-660X(79)90027-8, General Topology Appl. 10 (1979), 33-47. (1979) MR0519712DOI10.1016/0016-660X(79)90027-8
  3. R. Frič J. Gerlits, On the sequential order, Math. Slovaca 42 (1992), 505-512. (1992) MR1195044
  4. R. Frič M. Hušek V. Koutník, Sequential groups, k-groups and other categories of continuous algebras, to appear. MR1244367
  5. R. Frič F. Zanolin, Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 78 (1986), 200-218. (1986) MR0928331
  6. R. Frič F. Zanolin, Fine convergence in free groups, Czechoslovak Math. J. 36 (1983), 134-139. (1983) MR0822875
  7. A. Kaminski, On characterization of topological convergence, Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 50-70. (1979) MR0639315
  8. B. Kneis, 10.1002/mana.19881350116, Math. Nachr. 185 (1988), 181-211. (1988) Zbl0676.54011MR0944227DOI10.1002/mana.19881350116
  9. V. Koutník, 10.4064/sm-77-5-455-464, Studia Math. 77 (1984), 454-464. (1984) MR0751766DOI10.4064/sm-77-5-455-464
  10. V. Koutník, Closure and topological sequential convergence, Convergence structures 1984, (Proc. Conference on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 199-204. (1984) MR0835486
  11. W. F. LaMartin, On the foundations of k-group theory, Diss. Math. 146(1911). (1911) MR0480835
  12. W. F. LaMartin, Epics in the category of T 2 k-groups need not have dense range, Colloq. Math. 30 (1976), 37-41. (1976) Zbl0353.22001MR0427524
  13. M. McCord, 10.1090/S0002-9947-1969-0251719-4, Trans. Amer. Math. Soc. 146 (1969), 273-298. (1969) Zbl0193.23604MR0251719DOI10.1090/S0002-9947-1969-0251719-4
  14. P. Mikusinski, Problems posed at the Conference, Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 110-112. (1979) MR0639325
  15. J. Novák, On convergence groups, Czechoslovak Math. J. 20(1970), 357-374. (1970) MR0263973
  16. E. Nummela, 10.1016/0166-8641(82)90009-8, Topology Appl. 13 (1982), 77-83. (1982) MR0637429DOI10.1016/0166-8641(82)90009-8
  17. P. J. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 88(1981), 793-801. (1981) Zbl0474.22001MR0630057
  18. E. T. Ordman, 10.1016/0016-660X(75)90021-5, General Topology Appl. 5 (1975), 205-219. (1975) Zbl0306.22003MR0427525DOI10.1016/0016-660X(75)90021-5
  19. E. T. Ordman B. V. Smith-Thomas, 10.1090/S0002-9939-1980-0565363-2, Proc. Amer. Math. Soc. 19 (1980), 319-326. (1980) MR0565363DOI10.1090/S0002-9939-1980-0565363-2
  20. H.-F. Porst, Free algebras over cartesian closed topological categories, General Topology and its Relation to Modern Analysis and Algebra, VI, (Proc Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 437-450. (1986) MR0952627
  21. O. Schreier, 10.1007/BF02950716, Hamb. Abh. 4 (1926), 15-32. (1926) DOI10.1007/BF02950716
  22. O. Wyler, 10.1016/0016-660X(72)90014-1, General Topology Appl. 3 (1973), 225-242. (1973) Zbl0264.54018MR0324622DOI10.1016/0016-660X(72)90014-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.