-groups versus -groups
Mathematica Bohemica (1993)
- Volume: 118, Issue: 2, page 113-121
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFrič, Roman. "$L$-groups versus $k$-groups." Mathematica Bohemica 118.2 (1993): 113-121. <http://eudml.org/doc/29203>.
@article{Frič1993,
abstract = {We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega _1$.},
author = {Frič, Roman},
journal = {Mathematica Bohemica},
keywords = {sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order; sequential convergence; FLUSH-convergence; free -group; free sequential group; sequential space; sequential order},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L$-groups versus $k$-groups},
url = {http://eudml.org/doc/29203},
volume = {118},
year = {1993},
}
TY - JOUR
AU - Frič, Roman
TI - $L$-groups versus $k$-groups
JO - Mathematica Bohemica
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 118
IS - 2
SP - 113
EP - 121
AB - We investigate free groups over sequential spaces. In particular, we show that the free $k$-group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is $\omega _1$.
LA - eng
KW - sequential convergence; FLUSH-convergence; free $k$-group; free sequential group; sequential space; sequential order; sequential convergence; FLUSH-convergence; free -group; free sequential group; sequential space; sequential order
UR - http://eudml.org/doc/29203
ER -
References
top- R. Engelking, General topology, PWN, Warszawa, 1977. (1977) Zbl0373.54002MR0500780
- T. H. Fay E. T. Ordman B. V. Smith-Thomas, 10.1016/0016-660X(79)90027-8, General Topology Appl. 10 (1979), 33-47. (1979) MR0519712DOI10.1016/0016-660X(79)90027-8
- R. Frič J. Gerlits, On the sequential order, Math. Slovaca 42 (1992), 505-512. (1992) MR1195044
- R. Frič M. Hušek V. Koutník, Sequential groups, k-groups and other categories of continuous algebras, to appear. MR1244367
- R. Frič F. Zanolin, Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 78 (1986), 200-218. (1986) MR0928331
- R. Frič F. Zanolin, Fine convergence in free groups, Czechoslovak Math. J. 36 (1983), 134-139. (1983) MR0822875
- A. Kaminski, On characterization of topological convergence, Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 50-70. (1979) MR0639315
- B. Kneis, 10.1002/mana.19881350116, Math. Nachr. 185 (1988), 181-211. (1988) Zbl0676.54011MR0944227DOI10.1002/mana.19881350116
- V. Koutník, 10.4064/sm-77-5-455-464, Studia Math. 77 (1984), 454-464. (1984) MR0751766DOI10.4064/sm-77-5-455-464
- V. Koutník, Closure and topological sequential convergence, Convergence structures 1984, (Proc. Conference on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 199-204. (1984) MR0835486
- W. F. LaMartin, On the foundations of k-group theory, Diss. Math. 146(1911). (1911) MR0480835
- W. F. LaMartin, Epics in the category of k-groups need not have dense range, Colloq. Math. 30 (1976), 37-41. (1976) Zbl0353.22001MR0427524
- M. McCord, 10.1090/S0002-9947-1969-0251719-4, Trans. Amer. Math. Soc. 146 (1969), 273-298. (1969) Zbl0193.23604MR0251719DOI10.1090/S0002-9947-1969-0251719-4
- P. Mikusinski, Problems posed at the Conference, Proc. Conf. on Convergence (Szczyrk, 1979), Polska Akad. Nauk, oddzial w Katowicach, Katowice, 1980, pp. 110-112. (1979) MR0639325
- J. Novák, On convergence groups, Czechoslovak Math. J. 20(1970), 357-374. (1970) MR0263973
- E. Nummela, 10.1016/0166-8641(82)90009-8, Topology Appl. 13 (1982), 77-83. (1982) MR0637429DOI10.1016/0166-8641(82)90009-8
- P. J. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 88(1981), 793-801. (1981) Zbl0474.22001MR0630057
- E. T. Ordman, 10.1016/0016-660X(75)90021-5, General Topology Appl. 5 (1975), 205-219. (1975) Zbl0306.22003MR0427525DOI10.1016/0016-660X(75)90021-5
- E. T. Ordman B. V. Smith-Thomas, 10.1090/S0002-9939-1980-0565363-2, Proc. Amer. Math. Soc. 19 (1980), 319-326. (1980) MR0565363DOI10.1090/S0002-9939-1980-0565363-2
- H.-F. Porst, Free algebras over cartesian closed topological categories, General Topology and its Relation to Modern Analysis and Algebra, VI, (Proc Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 437-450. (1986) MR0952627
- O. Schreier, 10.1007/BF02950716, Hamb. Abh. 4 (1926), 15-32. (1926) DOI10.1007/BF02950716
- O. Wyler, 10.1016/0016-660X(72)90014-1, General Topology Appl. 3 (1973), 225-242. (1973) Zbl0264.54018MR0324622DOI10.1016/0016-660X(72)90014-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.