Existence of multiple solutions for a third-order three-point regular boundary value problem
Mathematica Bohemica (1994)
- Volume: 119, Issue: 2, page 113-121
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topŠenkyřík, Martin. "Existence of multiple solutions for a third-order three-point regular boundary value problem." Mathematica Bohemica 119.2 (1994): 113-121. <http://eudml.org/doc/29234>.
@article{Šenkyřík1994,
	abstract = {In the paper we prove an Ambrosetti-Prodi type result for solutions $u$ of the third-order nonlinear differential equation, satisfying $u^\{\prime \}(0)=u^\{\prime \}(1)=u(\eta )=0,\ 0\le \eta \le 1$.},
	author = {Šenkyřík, Martin},
	journal = {Mathematica Bohemica},
	keywords = {boundary value problem; lower and upper solutions; degree theory; Ambrosetti-Prodi type theorem; coincidence degree; Nagumo functions; Ambrosetti-Prodi results; boundary value problem; lower and upper solutions; degree theory; Ambrosetti-Prodi type theorem},
	language = {eng},
	number = {2},
	pages = {113-121},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Existence of multiple solutions for a third-order three-point regular boundary value problem},
	url = {http://eudml.org/doc/29234},
	volume = {119},
	year = {1994},
}
TY  - JOUR
AU  - Šenkyřík, Martin
TI  - Existence of multiple solutions for a third-order three-point regular boundary value problem
JO  - Mathematica Bohemica
PY  - 1994
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 119
IS  - 2
SP  - 113
EP  - 121
AB  - In the paper we prove an Ambrosetti-Prodi type result for solutions $u$ of the third-order nonlinear differential equation, satisfying $u^{\prime }(0)=u^{\prime }(1)=u(\eta )=0,\ 0\le \eta \le 1$.
LA  - eng
KW  - boundary value problem; lower and upper solutions; degree theory; Ambrosetti-Prodi type theorem; coincidence degree; Nagumo functions; Ambrosetti-Prodi results; boundary value problem; lower and upper solutions; degree theory; Ambrosetti-Prodi type theorem
UR  - http://eudml.org/doc/29234
ER  - 
References
top- A. Ambrosetti, G. Prodi, 10.1007/BF02412022, Ann. Mat. Pura Appl. 93 (4) (1972), 231-247. (1972) MR0320844DOI10.1007/BF02412022
- S. H. Ding, J. Mawhin, A multiplicity result for periodic solutions of higher order ordinary differential equations, Differential and Integral Equations 1(1). Zbl0715.34086MR0920487
- C. Fabry J. Mawhin, M. Nkashama, 10.1112/blms/18.2.173, Bull. London Math. Soc. 18 (1986), 173-180. (1986) MR0818822DOI10.1112/blms/18.2.173
- J. Mawhin, 10.1090/cbms/040, CBMS Regional Confer. Ser. Math. No. 40. Amer. Math. Soc., Providence, 1979. (1979) Zbl0414.34025MR0525202DOI10.1090/cbms/040
- J. Mawhin, 10.1007/BF00945410, Z. Angew. Math. Phys. 38 (1987), 257-265. (1987) MR0885688DOI10.1007/BF00945410
- M. Šenkyřík, Method of lower and upper solutions for a third-order three-point regular boundary value problem, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. XXXI (1992), 60-70. (1992) MR1212606
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 