On q -strictly singular operators on variable exponent spaces

Carlos Buelga; Francisco L. Hernandez

Commentationes Mathematicae (2015)

  • Volume: 55, Issue: 2
  • ISSN: 2080-1211

Abstract

top
Strictly singular operators on variable exponent (or Nakano) function spaces L p · are characterized in terms of being q -strictly singular for the values q in the essential range R p · of the exponent function. This extends a result of L. Weiss [On perturbations of Fredholm operators in L p -spaces, Proc. Amer. Math. Soc. 67 (1977), 287-292] for L p -spaces.

How to cite

top

Carlos Buelga, and Francisco L. Hernandez. "On $\ell _{q}$-strictly singular operators on variable exponent spaces." Commentationes Mathematicae 55.2 (2015): null. <http://eudml.org/doc/292428>.

@article{CarlosBuelga2015,
abstract = {Strictly singular operators on variable exponent (or Nakano) function spaces $L^\{p\left(\cdot \right)\}$ are characterized in terms of being $\ell _\{q\}$-strictly singular for the values $q$ in the essential range $R_\{p\left(\cdot \right)\}$ of the exponent function. This extends a result of L. Weiss [On perturbations of Fredholm operators in $L_\{p\}$-spaces, Proc. Amer. Math. Soc. 67 (1977), 287-292] for $L^\{p\}$-spaces.},
author = {Carlos Buelga, Francisco L. Hernandez},
journal = {Commentationes Mathematicae},
keywords = {Variable exponent spaces, strictly singular operators},
language = {eng},
number = {2},
pages = {null},
title = {On $\ell _\{q\}$-strictly singular operators on variable exponent spaces},
url = {http://eudml.org/doc/292428},
volume = {55},
year = {2015},
}

TY - JOUR
AU - Carlos Buelga
AU - Francisco L. Hernandez
TI - On $\ell _{q}$-strictly singular operators on variable exponent spaces
JO - Commentationes Mathematicae
PY - 2015
VL - 55
IS - 2
SP - null
AB - Strictly singular operators on variable exponent (or Nakano) function spaces $L^{p\left(\cdot \right)}$ are characterized in terms of being $\ell _{q}$-strictly singular for the values $q$ in the essential range $R_{p\left(\cdot \right)}$ of the exponent function. This extends a result of L. Weiss [On perturbations of Fredholm operators in $L_{p}$-spaces, Proc. Amer. Math. Soc. 67 (1977), 287-292] for $L^{p}$-spaces.
LA - eng
KW - Variable exponent spaces, strictly singular operators
UR - http://eudml.org/doc/292428
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.