Boundaries, Martin's Axiom, and (P)-properties in dual Banach spaces

Antonio S. Granero; Juan M. Hernández

Commentationes Mathematicae (2016)

  • Volume: 56, Issue: 1
  • ISSN: 2080-1211

Abstract

top
Let X be a Banach space and 𝒮 𝑒𝑞 ( X * * ) (resp., X 0 ) the subset of elements ψ X * * such that there exists a sequence ( x n ) n 1 X such that x n ψ in the w * -topology of X * * (resp., there exists a separable subspace Y X such that ψ Y ¯ w * ). Then: (i) if Dens ( X ) 1 , the property X * * = X 0 (resp., X * * = 𝒮 𝑒𝑞 ( X * * ) ) is 1 -determined, i.e., X  has this property iff Y has, for every subspace Y X with Dens ( Y ) = 1 ; (ii) if X * * = X 0 , ( B ( X * * ) , w * ) has countable tightness; (iii) under the Martin’s axiom 𝑀𝐴 ( ω 1 ) we have X * * = 𝒮 𝑒𝑞 ( X * * ) iff ( B ( X * ) , w * ) has countable tightness and o v e r l i n e co ( B ) = co ¯ w * ( K ) for every subspace Y X , every w * -compact subset K of Y * , and every boundary B K .

How to cite

top

Antonio S. Granero, and Juan M. Hernández. "Boundaries, Martin's Axiom, and (P)-properties in dual Banach spaces." Commentationes Mathematicae 56.1 (2016): null. <http://eudml.org/doc/292437>.

@article{AntonioS2016,
abstract = {Let $X$ be a Banach space and $\mathcal \{S\} \mathit \{eq\}(X^\{**\})$ (resp., $X_\{\aleph _0\}$) the subset of elements $\psi \in X^\{**\}$ such that there exists a sequence $(x_n)_\{n\ge 1\}\subset X$ such that $x_n\rightarrow \psi $ in the $w^*$-topology of $X^\{**\}$ (resp., there exists a separable subspace $Y\subset X$ such that $\psi \in \smash\{\{\overline\{Y\}^\{w^*\}\}\}$). Then: (i) if $\operatorname\{Dens\}(X)\ge \aleph _1$, the property $X^\{**\}=X_\{\aleph _0\}$ (resp., $X^\{**\}=\mathcal \{S\}\mathit \{eq\}(X^\{**\})$) is $\aleph _1$-determined, i.e., $X$ has this property iff $Y$ has, for every subspace $Y\subset X$ with $\operatorname\{Dens\}(Y)=\aleph _1$; (ii) if $X^\{**\}=X _\{\aleph _0\}$, $ (B(X^\{**\}),w^*)$ has countable tightness; (iii) under the Martin’s axiom $\mathit \{MA\} (\omega _1)$ we have $X^\{**\}=\mathcal \{S\}\mathit \{eq\}(X^\{**\})$ iff $(B(X^*),w^*)$ has countable tightness and $\\overline \{\text\{co\}\}(B)=\overline\{\text\{co\}\} ^\{w^*\}(K)$ for every subspace $Y\subset X$, every $w^*$-compact subset $K$ of $Y^*$, and every boundary $B\subset K$.},
author = {Antonio S. Granero, Juan M. Hernández},
journal = {Commentationes Mathematicae},
keywords = {Boundaries, Martin’s Axiom, equality $Seq(X^\{**\})=X^\{**\}$, super-(P) property},
language = {eng},
number = {1},
pages = {null},
title = {Boundaries, Martin's Axiom, and (P)-properties in dual Banach spaces},
url = {http://eudml.org/doc/292437},
volume = {56},
year = {2016},
}

TY - JOUR
AU - Antonio S. Granero
AU - Juan M. Hernández
TI - Boundaries, Martin's Axiom, and (P)-properties in dual Banach spaces
JO - Commentationes Mathematicae
PY - 2016
VL - 56
IS - 1
SP - null
AB - Let $X$ be a Banach space and $\mathcal {S} \mathit {eq}(X^{**})$ (resp., $X_{\aleph _0}$) the subset of elements $\psi \in X^{**}$ such that there exists a sequence $(x_n)_{n\ge 1}\subset X$ such that $x_n\rightarrow \psi $ in the $w^*$-topology of $X^{**}$ (resp., there exists a separable subspace $Y\subset X$ such that $\psi \in \smash{{\overline{Y}^{w^*}}}$). Then: (i) if $\operatorname{Dens}(X)\ge \aleph _1$, the property $X^{**}=X_{\aleph _0}$ (resp., $X^{**}=\mathcal {S}\mathit {eq}(X^{**})$) is $\aleph _1$-determined, i.e., $X$ has this property iff $Y$ has, for every subspace $Y\subset X$ with $\operatorname{Dens}(Y)=\aleph _1$; (ii) if $X^{**}=X _{\aleph _0}$, $ (B(X^{**}),w^*)$ has countable tightness; (iii) under the Martin’s axiom $\mathit {MA} (\omega _1)$ we have $X^{**}=\mathcal {S}\mathit {eq}(X^{**})$ iff $(B(X^*),w^*)$ has countable tightness and $\\overline {\text{co}}(B)=\overline{\text{co}} ^{w^*}(K)$ for every subspace $Y\subset X$, every $w^*$-compact subset $K$ of $Y^*$, and every boundary $B\subset K$.
LA - eng
KW - Boundaries, Martin’s Axiom, equality $Seq(X^{**})=X^{**}$, super-(P) property
UR - http://eudml.org/doc/292437
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.