Determination of the potential form of operators

J. J. Telega

Mathematica Applicanda (1982)

  • Volume: 10, Issue: 18
  • ISSN: 1730-2668

Abstract

top
The author extends ideas of duality [see, for example, B. Noble and M. J. Sewell, J. Inst. Math. Appl. 9 (1972), 123–193; MR0307012] to a class of nonlinear operators on Banach spaces. Let U, V be Banach spaces and a(u,v) a bilinear form on U×V. Let N be a (nonlinear) operator N:U→V. GN(u)h denotes the Gâteaux derivative of N in the direction of h, computed at the point u∈U. Let us assume that a separates points in U×V (as defined by Marshall Stone). If there is v∈V such that a(h,v)=⟨h,Gf(u)⟩ for a functional f:U→R then v is called the gradient of f(u). The operator N is called potential if a suitable functional f satisfying this condition exists. The problem of symmetrizing N involves a suitable choice of the bilinear form a. For example, the operator N(u(t))=[(du/dt)2−g(t)] is not potential with respect to the usual L2 product. The author formulates a number of variational principles and discusses specific examples. This is an interesting article, supplementing the ideas of E. Tonti and of R. W. Atherton and G. M. Homsy [Studies in Appl. Math. 54 (1975), no. 1, 31–60; MR0458271].

How to cite

top

J. J. Telega. "Determination of the potential form of operators." Mathematica Applicanda 10.18 (1982): null. <http://eudml.org/doc/292645>.

@article{J1982,
abstract = {The author extends ideas of duality [see, for example, B. Noble and M. J. Sewell, J. Inst. Math. Appl. 9 (1972), 123–193; MR0307012] to a class of nonlinear operators on Banach spaces. Let U, V be Banach spaces and a(u,v) a bilinear form on U×V. Let N be a (nonlinear) operator N:U→V. GN(u)h denotes the Gâteaux derivative of N in the direction of h, computed at the point u∈U. Let us assume that a separates points in U×V (as defined by Marshall Stone). If there is v∈V such that a(h,v)=⟨h,Gf(u)⟩ for a functional f:U→R then v is called the gradient of f(u). The operator N is called potential if a suitable functional f satisfying this condition exists. The problem of symmetrizing N involves a suitable choice of the bilinear form a. For example, the operator N(u(t))=[(du/dt)2−g(t)] is not potential with respect to the usual L2 product. The author formulates a number of variational principles and discusses specific examples. This is an interesting article, supplementing the ideas of E. Tonti and of R. W. Atherton and G. M. Homsy [Studies in Appl. Math. 54 (1975), no. 1, 31–60; MR0458271].},
author = {J. J. Telega},
journal = {Mathematica Applicanda},
keywords = {Variational principles of physics,Variational principles},
language = {eng},
number = {18},
pages = {null},
title = {Determination of the potential form of operators},
url = {http://eudml.org/doc/292645},
volume = {10},
year = {1982},
}

TY - JOUR
AU - J. J. Telega
TI - Determination of the potential form of operators
JO - Mathematica Applicanda
PY - 1982
VL - 10
IS - 18
SP - null
AB - The author extends ideas of duality [see, for example, B. Noble and M. J. Sewell, J. Inst. Math. Appl. 9 (1972), 123–193; MR0307012] to a class of nonlinear operators on Banach spaces. Let U, V be Banach spaces and a(u,v) a bilinear form on U×V. Let N be a (nonlinear) operator N:U→V. GN(u)h denotes the Gâteaux derivative of N in the direction of h, computed at the point u∈U. Let us assume that a separates points in U×V (as defined by Marshall Stone). If there is v∈V such that a(h,v)=⟨h,Gf(u)⟩ for a functional f:U→R then v is called the gradient of f(u). The operator N is called potential if a suitable functional f satisfying this condition exists. The problem of symmetrizing N involves a suitable choice of the bilinear form a. For example, the operator N(u(t))=[(du/dt)2−g(t)] is not potential with respect to the usual L2 product. The author formulates a number of variational principles and discusses specific examples. This is an interesting article, supplementing the ideas of E. Tonti and of R. W. Atherton and G. M. Homsy [Studies in Appl. Math. 54 (1975), no. 1, 31–60; MR0458271].
LA - eng
KW - Variational principles of physics,Variational principles
UR - http://eudml.org/doc/292645
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.