Applications of the Hadamard product in geometric function theory

Zbigniew Jerzy Jakubowski; Piotr Liczberski; Łucja Żywień

Mathematica Bohemica (1991)

  • Volume: 116, Issue: 2, page 148-159
  • ISSN: 0862-7959

Abstract

top
Let 𝒜 denote the set of functions F holomorphic in the unit disc, normalized clasically: F ( 0 ) = 0 , F ' ( 0 ) = 1 , whereas A 𝒜 is an arbitrarily fixed subset. In this paper various properties of the classes A α , α C { - 1 , - 1 2 , ... } , of functions of the form f = F * k α are studied, where F . A , k α ( z ) = k ( z , α ) = z + 1 1 + α z 2 + ... + 1 1 + ( n - 1 ) α z n + ... , and F * k α denotes the Hadamard product of the functions F and k α . Some special cases of the set A were considered by other authors (see, for example, [15],[6],[3]).

How to cite

top

Jakubowski, Zbigniew Jerzy, Liczberski, Piotr, and Żywień, Łucja. "Applications of the Hadamard product in geometric function theory." Mathematica Bohemica 116.2 (1991): 148-159. <http://eudml.org/doc/29295>.

@article{Jakubowski1991,
abstract = {Let $\mathcal \{A\}$ denote the set of functions $F$ holomorphic in the unit disc, normalized clasically: $F(0)=0, F^\{\prime \}(0)=1$, whereas $A\subset \mathcal \{A\}$ is an arbitrarily fixed subset. In this paper various properties of the classes $A_\alpha , \alpha \in C \lbrace -1,-\frac\{1\}\{2\},\ldots \rbrace $, of functions of the form $f=F*k_\alpha $ are studied, where $F\in .A$, $k_\alpha (z)=k(z,\alpha )=z+\frac\{1\}\{1+\alpha \}z^2+\ldots + \frac\{1\}\{1+(n-1)\alpha \}z^n+\ldots $, and $F*k_\alpha $ denotes the Hadamard product of the functions $F$ and $k_\alpha $. Some special cases of the set $A$ were considered by other authors (see, for example, [15],[6],[3]).},
author = {Jakubowski, Zbigniew Jerzy, Liczberski, Piotr, Żywień, Łucja},
journal = {Mathematica Bohemica},
keywords = {Hadamard product; typically real functions; class of type $A_\alpha $; Hadamard product},
language = {eng},
number = {2},
pages = {148-159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Applications of the Hadamard product in geometric function theory},
url = {http://eudml.org/doc/29295},
volume = {116},
year = {1991},
}

TY - JOUR
AU - Jakubowski, Zbigniew Jerzy
AU - Liczberski, Piotr
AU - Żywień, Łucja
TI - Applications of the Hadamard product in geometric function theory
JO - Mathematica Bohemica
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 116
IS - 2
SP - 148
EP - 159
AB - Let $\mathcal {A}$ denote the set of functions $F$ holomorphic in the unit disc, normalized clasically: $F(0)=0, F^{\prime }(0)=1$, whereas $A\subset \mathcal {A}$ is an arbitrarily fixed subset. In this paper various properties of the classes $A_\alpha , \alpha \in C \lbrace -1,-\frac{1}{2},\ldots \rbrace $, of functions of the form $f=F*k_\alpha $ are studied, where $F\in .A$, $k_\alpha (z)=k(z,\alpha )=z+\frac{1}{1+\alpha }z^2+\ldots + \frac{1}{1+(n-1)\alpha }z^n+\ldots $, and $F*k_\alpha $ denotes the Hadamard product of the functions $F$ and $k_\alpha $. Some special cases of the set $A$ were considered by other authors (see, for example, [15],[6],[3]).
LA - eng
KW - Hadamard product; typically real functions; class of type $A_\alpha $; Hadamard product
UR - http://eudml.org/doc/29295
ER -

References

top
  1. L. Brickman D. R. Wilken, 10.1090/S0002-9939-1974-0328057-1, Proc. Amer. Math. Soc. 42 (1974), 523-528. (1974) MR0328057DOI10.1090/S0002-9939-1974-0328057-1
  2. D. M. Campbell V. Singh, 10.2140/pjm.1979.84.29, Pac. J. Math., v. 84, No. í (1979), 29-33. (1979) MR0559624DOI10.2140/pjm.1979.84.29
  3. P. N. Chichra, 10.1090/S0002-9939-1977-0425097-1, PAMS, v. 62,. No. 1 (1977), 37-43. (1977) Zbl0355.30013MR0425097DOI10.1090/S0002-9939-1977-0425097-1
  4. A. W. Goodman, Univalent functions, v. 1, 2. Mariner Publishing Company, 1983. (1983) Zbl1041.30501
  5. I. S. Jack, 10.1112/jlms/s2-3.3.469, J. London Math. Soc., v. 2, No. 3 3 (1971), 469-474. (1971) MR0281897DOI10.1112/jlms/s2-3.3.469
  6. Z. J. Jakubowski, On some classes of analytic functions, Complex Analysis. Sofia (1989), 241-249. Proc. of the IXth Instructional conference on the theory of extremal problems, Sielpia (1987), 59-78. (1989) MR1127640
  7. J. Krzyż Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci., 11, 7 (1963), 447-448. (1963) MR0153830
  8. Z. Lewandowski S. Miller E. Zlotkiewicz, 10.1090/S0002-9939-1976-0399438-7, Proc. Amer. Math. Soc., 56 (1976), 111-117. (1976) MR0399438DOI10.1090/S0002-9939-1976-0399438-7
  9. S. Miller, 10.1090/S0002-9904-1975-13643-3, Bull. of Amer. Math. Soc. v. 81, No. 1 (1975), 79-81. (1975) MR0355056DOI10.1090/S0002-9904-1975-13643-3
  10. N. N. Pascu, Јanowski alpha-starlike-convex functions, Studia Univ. Babes-Bolyai, Mathematica (1976), 23-27. (1976) MR0396929
  11. M. S. Robertson, 10.1090/S0002-9947-1963-0142756-3, Tгans. Amer. Math. Soc., 106 (1963), 236-253. (1963) MR0142756DOI10.1090/S0002-9947-1963-0142756-3
  12. W. W. Rogosiński, 10.1007/BF01186552, Math. Z., 35 (1932), 93-121. (1932) MR1545292DOI10.1007/BF01186552
  13. S. Ruscheweyh, Convolutions in geometric function theory, Press Univ. Montreal, 1982. (1982) Zbl0499.30001MR0674296
  14. S. Schober, Univalent functions - selected topics, Lecture Notes in Math., 1975. (1975) Zbl0306.30018
  15. K. Skalska, 10.4064/ap-38-2-141-152, Ann. Polon. Math., 38 (1980), 141-152. (1980) Zbl0465.30012MR0599238DOI10.4064/ap-38-2-141-152
  16. O. Toeplitz, 10.1007/BF02565600, Comment. Math. Helv., 23 (1949), 222- 242. (1949) MR0032952DOI10.1007/BF02565600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.