Applications of the Hadamard product in geometric function theory
Zbigniew Jerzy Jakubowski; Piotr Liczberski; Łucja Żywień
Mathematica Bohemica (1991)
- Volume: 116, Issue: 2, page 148-159
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJakubowski, Zbigniew Jerzy, Liczberski, Piotr, and Żywień, Łucja. "Applications of the Hadamard product in geometric function theory." Mathematica Bohemica 116.2 (1991): 148-159. <http://eudml.org/doc/29295>.
@article{Jakubowski1991,
abstract = {Let $\mathcal \{A\}$ denote the set of functions $F$ holomorphic in the unit disc, normalized clasically: $F(0)=0, F^\{\prime \}(0)=1$, whereas $A\subset \mathcal \{A\}$ is an arbitrarily fixed subset. In this paper various properties of the classes $A_\alpha , \alpha \in C \lbrace -1,-\frac\{1\}\{2\},\ldots \rbrace $, of functions of the form $f=F*k_\alpha $ are studied, where $F\in .A$, $k_\alpha (z)=k(z,\alpha )=z+\frac\{1\}\{1+\alpha \}z^2+\ldots + \frac\{1\}\{1+(n-1)\alpha \}z^n+\ldots $, and $F*k_\alpha $ denotes the Hadamard product of the functions $F$ and $k_\alpha $. Some special cases of the set $A$ were considered by other authors (see, for example, [15],[6],[3]).},
author = {Jakubowski, Zbigniew Jerzy, Liczberski, Piotr, Żywień, Łucja},
journal = {Mathematica Bohemica},
keywords = {Hadamard product; typically real functions; class of type $A_\alpha $; Hadamard product},
language = {eng},
number = {2},
pages = {148-159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Applications of the Hadamard product in geometric function theory},
url = {http://eudml.org/doc/29295},
volume = {116},
year = {1991},
}
TY - JOUR
AU - Jakubowski, Zbigniew Jerzy
AU - Liczberski, Piotr
AU - Żywień, Łucja
TI - Applications of the Hadamard product in geometric function theory
JO - Mathematica Bohemica
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 116
IS - 2
SP - 148
EP - 159
AB - Let $\mathcal {A}$ denote the set of functions $F$ holomorphic in the unit disc, normalized clasically: $F(0)=0, F^{\prime }(0)=1$, whereas $A\subset \mathcal {A}$ is an arbitrarily fixed subset. In this paper various properties of the classes $A_\alpha , \alpha \in C \lbrace -1,-\frac{1}{2},\ldots \rbrace $, of functions of the form $f=F*k_\alpha $ are studied, where $F\in .A$, $k_\alpha (z)=k(z,\alpha )=z+\frac{1}{1+\alpha }z^2+\ldots + \frac{1}{1+(n-1)\alpha }z^n+\ldots $, and $F*k_\alpha $ denotes the Hadamard product of the functions $F$ and $k_\alpha $. Some special cases of the set $A$ were considered by other authors (see, for example, [15],[6],[3]).
LA - eng
KW - Hadamard product; typically real functions; class of type $A_\alpha $; Hadamard product
UR - http://eudml.org/doc/29295
ER -
References
top- L. Brickman D. R. Wilken, 10.1090/S0002-9939-1974-0328057-1, Proc. Amer. Math. Soc. 42 (1974), 523-528. (1974) MR0328057DOI10.1090/S0002-9939-1974-0328057-1
- D. M. Campbell V. Singh, 10.2140/pjm.1979.84.29, Pac. J. Math., v. 84, No. í (1979), 29-33. (1979) MR0559624DOI10.2140/pjm.1979.84.29
- P. N. Chichra, 10.1090/S0002-9939-1977-0425097-1, PAMS, v. 62,. No. 1 (1977), 37-43. (1977) Zbl0355.30013MR0425097DOI10.1090/S0002-9939-1977-0425097-1
- A. W. Goodman, Univalent functions, v. 1, 2. Mariner Publishing Company, 1983. (1983) Zbl1041.30501
- I. S. Jack, 10.1112/jlms/s2-3.3.469, J. London Math. Soc., v. 2, No. 3 3 (1971), 469-474. (1971) MR0281897DOI10.1112/jlms/s2-3.3.469
- Z. J. Jakubowski, On some classes of analytic functions, Complex Analysis. Sofia (1989), 241-249. Proc. of the IXth Instructional conference on the theory of extremal problems, Sielpia (1987), 59-78. (1989) MR1127640
- J. Krzyż Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci., 11, 7 (1963), 447-448. (1963) MR0153830
- Z. Lewandowski S. Miller E. Zlotkiewicz, 10.1090/S0002-9939-1976-0399438-7, Proc. Amer. Math. Soc., 56 (1976), 111-117. (1976) MR0399438DOI10.1090/S0002-9939-1976-0399438-7
- S. Miller, 10.1090/S0002-9904-1975-13643-3, Bull. of Amer. Math. Soc. v. 81, No. 1 (1975), 79-81. (1975) MR0355056DOI10.1090/S0002-9904-1975-13643-3
- N. N. Pascu, Јanowski alpha-starlike-convex functions, Studia Univ. Babes-Bolyai, Mathematica (1976), 23-27. (1976) MR0396929
- M. S. Robertson, 10.1090/S0002-9947-1963-0142756-3, Tгans. Amer. Math. Soc., 106 (1963), 236-253. (1963) MR0142756DOI10.1090/S0002-9947-1963-0142756-3
- W. W. Rogosiński, 10.1007/BF01186552, Math. Z., 35 (1932), 93-121. (1932) MR1545292DOI10.1007/BF01186552
- S. Ruscheweyh, Convolutions in geometric function theory, Press Univ. Montreal, 1982. (1982) Zbl0499.30001MR0674296
- S. Schober, Univalent functions - selected topics, Lecture Notes in Math., 1975. (1975) Zbl0306.30018
- K. Skalska, 10.4064/ap-38-2-141-152, Ann. Polon. Math., 38 (1980), 141-152. (1980) Zbl0465.30012MR0599238DOI10.4064/ap-38-2-141-152
- O. Toeplitz, 10.1007/BF02565600, Comment. Math. Helv., 23 (1949), 222- 242. (1949) MR0032952DOI10.1007/BF02565600
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.