The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Model to generate phylogenetic missing stages of dinosaurs

Zofia Sikorska-Piwowska; Tomasz Łukaszuk

Mathematica Applicanda (2015)

  • Volume: 43, Issue: 2
  • ISSN: 1730-2668

Abstract

top
Aim of the paper is to present a mathematical method used to generate the missing stages of the evolution of fossil vertebrates. Considered excavations may be in the form of skeletons or the traces left by autopodium during locomotion of these animals. The research material contains selected dinosaurs, which features of locomotor apparatus were described in terms of chronology and habitat affiliation. They were formalized in the form of a numeric code by Sikorska-Piwowska [29]. The present paper has in view taking into account the adaptation and specialization traits of limbs and also the types of autopodium joints and basipodium specializations. The vector of binary features is assigned to each investigated form of Tetrapoda. It was taken the simplified assumption of statistical independence and equipoise of investigated features during the building of the model. There are no reasons for distinguishing any of them. The projection of the spatial image of dinosaurs’ locomotor apparatus development has the expression in the form of mathematical cladogram. This model verifies some evolution stages like origin of pre-birds lined with hypothetic form related with Coelophysis, one of the earliest known dinosaurs from upper Triassic. In such a manner Archeopteryx was left out from considerations as the ancestor of prebirds.

How to cite

top

Zofia Sikorska-Piwowska, and Tomasz Łukaszuk. "Model to generate phylogenetic missing stages of dinosaurs." Mathematica Applicanda 43.2 (2015): null. <http://eudml.org/doc/293205>.

@article{ZofiaSikorska2015,
abstract = {Aim of the paper is to present a mathematical method used to generate the missing stages of the evolution of fossil vertebrates. Considered excavations may be in the form of skeletons or the traces left by autopodium during locomotion of these animals. The research material contains selected dinosaurs, which features of locomotor apparatus were described in terms of chronology and habitat affiliation. They were formalized in the form of a numeric code by Sikorska-Piwowska [29]. The present paper has in view taking into account the adaptation and specialization traits of limbs and also the types of autopodium joints and basipodium specializations. The vector of binary features is assigned to each investigated form of Tetrapoda. It was taken the simplified assumption of statistical independence and equipoise of investigated features during the building of the model. There are no reasons for distinguishing any of them. The projection of the spatial image of dinosaurs’ locomotor apparatus development has the expression in the form of mathematical cladogram. This model verifies some evolution stages like origin of pre-birds lined with hypothetic form related with Coelophysis, one of the earliest known dinosaurs from upper Triassic. In such a manner Archeopteryx was left out from considerations as the ancestor of prebirds.},
author = {Zofia Sikorska-Piwowska, Tomasz Łukaszuk},
journal = {Mathematica Applicanda},
keywords = {},
language = {eng},
number = {2},
pages = {null},
title = {Model to generate phylogenetic missing stages of dinosaurs},
url = {http://eudml.org/doc/293205},
volume = {43},
year = {2015},
}

TY - JOUR
AU - Zofia Sikorska-Piwowska
AU - Tomasz Łukaszuk
TI - Model to generate phylogenetic missing stages of dinosaurs
JO - Mathematica Applicanda
PY - 2015
VL - 43
IS - 2
SP - null
AB - Aim of the paper is to present a mathematical method used to generate the missing stages of the evolution of fossil vertebrates. Considered excavations may be in the form of skeletons or the traces left by autopodium during locomotion of these animals. The research material contains selected dinosaurs, which features of locomotor apparatus were described in terms of chronology and habitat affiliation. They were formalized in the form of a numeric code by Sikorska-Piwowska [29]. The present paper has in view taking into account the adaptation and specialization traits of limbs and also the types of autopodium joints and basipodium specializations. The vector of binary features is assigned to each investigated form of Tetrapoda. It was taken the simplified assumption of statistical independence and equipoise of investigated features during the building of the model. There are no reasons for distinguishing any of them. The projection of the spatial image of dinosaurs’ locomotor apparatus development has the expression in the form of mathematical cladogram. This model verifies some evolution stages like origin of pre-birds lined with hypothetic form related with Coelophysis, one of the earliest known dinosaurs from upper Triassic. In such a manner Archeopteryx was left out from considerations as the ancestor of prebirds.
LA - eng
KW -
UR - http://eudml.org/doc/293205
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.