Approximation and entropy numbers of embeddings in weighted Orlicz spaces
Mathematica Bohemica (1991)
- Volume: 116, Issue: 3, page 281-295
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEdmunds, David Eric, and Sun, Jiong. "Approximation and entropy numbers of embeddings in weighted Orlicz spaces." Mathematica Bohemica 116.3 (1991): 281-295. <http://eudml.org/doc/29323>.
@article{Edmunds1991,
abstract = {Upper estimates are obtained for approximation and entropy numbers of the embeddings of weighted Sobolev spaces into appropriate weighted Orlicz spaces. Results are given when the underlying space domain is bounded and for certain unbounded domains.},
author = {Edmunds, David Eric, Sun, Jiong},
journal = {Mathematica Bohemica},
keywords = {entropy numbers; weighted Sobolev spaces; Orlicz spaces; Sobolev spaces; weights; approximation and entropy numbers; entropy numbers; weighted Sobolev spaces; Orlicz spaces},
language = {eng},
number = {3},
pages = {281-295},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation and entropy numbers of embeddings in weighted Orlicz spaces},
url = {http://eudml.org/doc/29323},
volume = {116},
year = {1991},
}
TY - JOUR
AU - Edmunds, David Eric
AU - Sun, Jiong
TI - Approximation and entropy numbers of embeddings in weighted Orlicz spaces
JO - Mathematica Bohemica
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 116
IS - 3
SP - 281
EP - 295
AB - Upper estimates are obtained for approximation and entropy numbers of the embeddings of weighted Sobolev spaces into appropriate weighted Orlicz spaces. Results are given when the underlying space domain is bounded and for certain unbounded domains.
LA - eng
KW - entropy numbers; weighted Sobolev spaces; Orlicz spaces; Sobolev spaces; weights; approximation and entropy numbers; entropy numbers; weighted Sobolev spaces; Orlicz spaces
UR - http://eudml.org/doc/29323
ER -
References
top- M. S. Birman M. S. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, Amer. Math. Soc. Transl. (2) 114 (1980), 1 - 132. (1980) MR0562305
- D. E. Edmunds R. M. Edmunds, 10.1112/jlms/s2-32.3.528, J. Lond. Math. Soc. (2) 32 (1985), 528-538. (1985) MR0825929DOI10.1112/jlms/s2-32.3.528
- D. E. Edmunds W. D. Evans, Orlicz and Sobolev spaces on unbounded domains, Proc. Roy. Soc. A342 (1975), 373-400. (1975) MR0394170
- D. E. Edmunds W. D. Evans, Spectral theory and differential operators, Oxford University Press, Oxford, 1987. (1987) MR0929030
- D. E. Edmunds A. Kufner, Jiong Sun, Extensions of functions in weighted Sobolev spaces, Rend. Accad. Nat. Sci. XL Mem. Mat. (5) 14, 17 (1990), 327-339. (1990) MR1106583
- M. Krbec L. Pick, On imbeddings between weighted Orlicz spaces, Zeitschrift Anal. Anwend. (1) 10 (1991), 105-116. (1991) MR1155360
- A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Ltd., 1985. (1985) Zbl0579.35021MR0802206
- A. Kufner, Boundary value problems in weighted spaces, Equadiff 6, Lecture Notes in Mathematics 1192, Springer-Verlag, Berlin-Heidelberg-New York, 1986, pp. 35-48. (1986) Zbl0627.46032MR0877105
- M. Namasivayam, 10.1093/qmath/36.2.231, Quart. J. Math., Oxford (2) 36 (1985), 231-242. (1985) MR0790483DOI10.1093/qmath/36.2.231
- E. W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Mathematics 1074, Springer-Verlag, Berlin-Heidelberg-New York, 1984. (1984) Zbl0541.35001MR0757718
- J.-O. Strömberg R. L. Wheeden, Fractional integrals on weighted and spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. (1985) MR0766221
- H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978. (1978) Zbl0387.46033MR0503903
- N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. (1967) Zbl0163.36402MR0216286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.