# On the Jacobson radical of strongly group graded rings

Commentationes Mathematicae Universitatis Carolinae (1994)

- Volume: 35, Issue: 3, page 575-580
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topKelarev, Andrei V.. "On the Jacobson radical of strongly group graded rings." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 575-580. <http://eudml.org/doc/247627>.

@article{Kelarev1994,

abstract = {For any non-torsion group $G$ with identity $e$, we construct a strongly $G$-graded ring $R$ such that the Jacobson radical $J(R_e)$ is locally nilpotent, but $J(R)$ is not locally nilpotent. This answers a question posed by Puczyłowski.},

author = {Kelarev, Andrei V.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {strongly graded rings; radicals; local nilpotency; Jacobson radical; strongly -graded ring; locally nilpotent Jacobson radical; unique product group; -nilpotency},

language = {eng},

number = {3},

pages = {575-580},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {On the Jacobson radical of strongly group graded rings},

url = {http://eudml.org/doc/247627},

volume = {35},

year = {1994},

}

TY - JOUR

AU - Kelarev, Andrei V.

TI - On the Jacobson radical of strongly group graded rings

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1994

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 35

IS - 3

SP - 575

EP - 580

AB - For any non-torsion group $G$ with identity $e$, we construct a strongly $G$-graded ring $R$ such that the Jacobson radical $J(R_e)$ is locally nilpotent, but $J(R)$ is not locally nilpotent. This answers a question posed by Puczyłowski.

LA - eng

KW - strongly graded rings; radicals; local nilpotency; Jacobson radical; strongly -graded ring; locally nilpotent Jacobson radical; unique product group; -nilpotency

UR - http://eudml.org/doc/247627

ER -

## References

top- Amitsur S.A., Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273-298. (1971) Zbl0221.16014MR0414604
- Clase M.V., Jespers E., On the Jacobson radical of semigroup graded rings, to appear. Zbl0811.16034MR1296583
- Cohen M., Montgomery S., Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), 237-258. (1984) Zbl0533.16001MR0728711
- Cohen M., Rowen L.H., Group graded rings, Commun. Algebra 11 (1983), 1252-1270. (1983) Zbl0522.16001MR0696990
- Gardner B.J., Some aspects of $T$-nilpotence, Pacific J. Math 53 (1974), 117-130. (1974) Zbl0253.16009MR0360667
- Jespers E., On radicals of graded rings and applications to semigroup rings, Commun. Algebra 13 (1985), 2457-2472. (1985) Zbl0575.16001MR0807485
- Jespers E., Krempa J., Puczyłowski E.R., On radicals of graded rings, Commun. Algebra 10 (1982), 1849-1854. (1982) MR0674695
- Jespers E., Puczyłowski E.R., The Jacobson and Brown-McCoy radicals of rings graded by free groups, Commun. Algebra 19 (1991), 551-558. (1991) MR1100363
- Karpilovsky G., The Jacobson Radical of Classical Rings, Pitman Monographs, New York, 1991. Zbl0729.16001MR1124405
- Kelarev A.V., Hereditary radicals and bands of associative rings, J. Austral. Math. Soc. (Ser. A) 51 (1991), 62-72. (1991) Zbl0756.16010MR1119688
- Kelarev A.V., Radicals of graded rings and applications to semigroup rings, Commun. Algebra 20 (1992), 681-700. (1992) Zbl0748.16018MR1153042
- Năstăsescu C., Strongly graded rings of finite groups, Commun. Algebra 11 (1983), 1033-1071. (1983) MR0700723
- Okniński J., On the radical of semigroup algebras satisfying polynomial identities, Math. Proc. Cambridge Philos. Soc. 99 (1986), 45-50. (1986) MR0809496
- Okniński J., Semigroup Algebras, Marcel Dekker, New York, 1991. MR1083356
- Passman D.S., Infinite crossed products and group graded rings, Trans. Amer. Math. Soc. 284 (1984), 707-727. (1984) Zbl0519.16010MR0743740
- Passman D.S., The Algebraic Structure of Group Rings, Wiley Interscience, New York, 1977. Zbl0654.16001MR0470211
- Puczyłowski E.R., A note on graded algebras, Proc. Amer. Math. Soc. 113 (1991), 1-3. (1991) MR0991706
- Puczyłowski E.R., Some questions concerning radicals of associative rings, Proc. Szekszásrd 1991 Conf. Theory of Radicals Coll. Math. Soc. János Bolyai 61 (1993), 209-227. (1993) MR1243913
- Ram J., On the semisimplicity of skew polynomial rings, Proc. Amer. Math. Soc. 90 (1984), 347-351. (1984) Zbl0535.16002MR0728345
- Saorín M., Descending chain conditions for graded rings, Proc. Amer. Math. Soc. 115 (1992), 295-301. (1992) MR1093603
- Wauters P., Jespers E., Rings graded by an inverse semigroup with finitely many idempotents, Houston J. Math. 15 (1989), 291-304. (1989) Zbl0685.16003MR1022070

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.