Wpływ pierwotnych reprezentacji na formalne rozumienie pojęć geometrycznych

Marta Pytlak; Ewa Swoboda

Didactica Mathematicae (2017)

  • Volume: 39
  • ISSN: 0208-8916

Abstract

top
W tym artykule analizujemy trudności studentów matematyki w przejściuod rozumienia trapezu jako czworoboku posiadającego dwie podstawy różnejdługości do ujęcia zgodnego z jego formalną definicją. Nasze badanie zostałoprzeprowadzone wśród 25 studentów – przyszłych nauczycieli matematyki. Wtrakcie studiów studenci ukończyli kurs „geometrii elementarnej”, który trwał2 semestry (60 godzin wykładów i 60 godzin ćwiczeń). Celem tego kursu było,między innymi, zapoznanie studentów z podstawowymi pojęciami geometrycznymiz wyższego stanowiska i przygotowanie ich do rozumienia roli definicjiw nadawaniu formalnego znaczenia pojęciom matematycznym. Ci sami studenci,po pewnym czasie, w ramach zajęć z dydaktyki matematyki otrzymalikilka opisów niektórych pojęć geometrycznych (między innymi – trapezu) a ichzadaniem było ocenienie, czy te opisy można uznać za poprawne definicje. Dodatkowo,w przypadku opisów niepoprawnych mieli wskazać na czym polegabłąd i starać się go usunąć. Badania pokazały, że studenci reagowali dwutorowo:nie mieli problemu z rozpoznaniem tej definicji, którą analizowali jakowzorcową podczas zajęć z geometrii, i z uznaniem jej jako poprawnej. Z drugiejstrony, ich próby naprawy opisów odbiegających od poprawnej definicjibyły najczęściej zgodne z szeroko rozumianym obrazem pojęcia, często stowarzyszonymz własnościami figury, a nie z jego definicją. To wyobrażenie byłododatkowo zdominowane przez prototypowe zrozumienie trapezu jako czworokątaposiadającego dwie podstawy – w tym ujęciu „podstawy” były utożsamiane„z dokładnie jedną parą boków równoległych”. W artykule zostaładodatkowo przedstawiona skrótowa analiza szkolnych opracowań dotyczącychprezentacji pojęcia trapezu. Na tej podstawie można stwierdzić, że obraz pojęcia„trapez” reprezentowany przez badanych studentów jest ściśle powiązany ztymi prototypowymi reprezentacjami, prezentowanymi w podręcznikach. Wynikibadań sugerują, że wczesne intuicje, wzmacniane pierwotnymi szkolnymireprezentacjami pojęcia są bardzo stabilne i odporne na asymilację wczesnychujęć w ramy szerszych znaczeń. Takie wyniki mogą wyjaśniać niektóre trudnościdotyczące niewłaściwych intuicji związanych z pojęciami geometrycznymi.W związku z tym sugerują potrzebę bardzo wyważonego, długoterminowegoplanowania nauczania matematyki, w którym wprowadzane intuicyjnie pojęciana niższych szczeblach edukacyjnych nie będą blokować tego rozumienia,które w przyszłości będzie funkcjonować w matematyce ujmowanej formalnie.

How to cite

top

Marta Pytlak, and Ewa Swoboda. "Wpływ pierwotnych reprezentacji na formalne rozumienie pojęć geometrycznych." Didactica Mathematicae 39 (2017): null. <http://eudml.org/doc/293516>.

@article{MartaPytlak2017,
abstract = {W tym artykule analizujemy trudności studentów matematyki w przejściuod rozumienia trapezu jako czworoboku posiadającego dwie podstawy różnejdługości do ujęcia zgodnego z jego formalną definicją. Nasze badanie zostałoprzeprowadzone wśród 25 studentów – przyszłych nauczycieli matematyki. Wtrakcie studiów studenci ukończyli kurs „geometrii elementarnej”, który trwał2 semestry (60 godzin wykładów i 60 godzin ćwiczeń). Celem tego kursu było,między innymi, zapoznanie studentów z podstawowymi pojęciami geometrycznymiz wyższego stanowiska i przygotowanie ich do rozumienia roli definicjiw nadawaniu formalnego znaczenia pojęciom matematycznym. Ci sami studenci,po pewnym czasie, w ramach zajęć z dydaktyki matematyki otrzymalikilka opisów niektórych pojęć geometrycznych (między innymi – trapezu) a ichzadaniem było ocenienie, czy te opisy można uznać za poprawne definicje. Dodatkowo,w przypadku opisów niepoprawnych mieli wskazać na czym polegabłąd i starać się go usunąć. Badania pokazały, że studenci reagowali dwutorowo:nie mieli problemu z rozpoznaniem tej definicji, którą analizowali jakowzorcową podczas zajęć z geometrii, i z uznaniem jej jako poprawnej. Z drugiejstrony, ich próby naprawy opisów odbiegających od poprawnej definicjibyły najczęściej zgodne z szeroko rozumianym obrazem pojęcia, często stowarzyszonymz własnościami figury, a nie z jego definicją. To wyobrażenie byłododatkowo zdominowane przez prototypowe zrozumienie trapezu jako czworokątaposiadającego dwie podstawy – w tym ujęciu „podstawy” były utożsamiane„z dokładnie jedną parą boków równoległych”. W artykule zostaładodatkowo przedstawiona skrótowa analiza szkolnych opracowań dotyczącychprezentacji pojęcia trapezu. Na tej podstawie można stwierdzić, że obraz pojęcia„trapez” reprezentowany przez badanych studentów jest ściśle powiązany ztymi prototypowymi reprezentacjami, prezentowanymi w podręcznikach. Wynikibadań sugerują, że wczesne intuicje, wzmacniane pierwotnymi szkolnymireprezentacjami pojęcia są bardzo stabilne i odporne na asymilację wczesnychujęć w ramy szerszych znaczeń. Takie wyniki mogą wyjaśniać niektóre trudnościdotyczące niewłaściwych intuicji związanych z pojęciami geometrycznymi.W związku z tym sugerują potrzebę bardzo wyważonego, długoterminowegoplanowania nauczania matematyki, w którym wprowadzane intuicyjnie pojęciana niższych szczeblach edukacyjnych nie będą blokować tego rozumienia,które w przyszłości będzie funkcjonować w matematyce ujmowanej formalnie.},
author = {Marta Pytlak, Ewa Swoboda},
journal = {Didactica Mathematicae},
keywords = {concept image, definition, formal understanding, persistent prototypical representation, trapezoid},
language = {pol},
pages = {null},
title = {Wpływ pierwotnych reprezentacji na formalne rozumienie pojęć geometrycznych},
url = {http://eudml.org/doc/293516},
volume = {39},
year = {2017},
}

TY - JOUR
AU - Marta Pytlak
AU - Ewa Swoboda
TI - Wpływ pierwotnych reprezentacji na formalne rozumienie pojęć geometrycznych
JO - Didactica Mathematicae
PY - 2017
VL - 39
SP - null
AB - W tym artykule analizujemy trudności studentów matematyki w przejściuod rozumienia trapezu jako czworoboku posiadającego dwie podstawy różnejdługości do ujęcia zgodnego z jego formalną definicją. Nasze badanie zostałoprzeprowadzone wśród 25 studentów – przyszłych nauczycieli matematyki. Wtrakcie studiów studenci ukończyli kurs „geometrii elementarnej”, który trwał2 semestry (60 godzin wykładów i 60 godzin ćwiczeń). Celem tego kursu było,między innymi, zapoznanie studentów z podstawowymi pojęciami geometrycznymiz wyższego stanowiska i przygotowanie ich do rozumienia roli definicjiw nadawaniu formalnego znaczenia pojęciom matematycznym. Ci sami studenci,po pewnym czasie, w ramach zajęć z dydaktyki matematyki otrzymalikilka opisów niektórych pojęć geometrycznych (między innymi – trapezu) a ichzadaniem było ocenienie, czy te opisy można uznać za poprawne definicje. Dodatkowo,w przypadku opisów niepoprawnych mieli wskazać na czym polegabłąd i starać się go usunąć. Badania pokazały, że studenci reagowali dwutorowo:nie mieli problemu z rozpoznaniem tej definicji, którą analizowali jakowzorcową podczas zajęć z geometrii, i z uznaniem jej jako poprawnej. Z drugiejstrony, ich próby naprawy opisów odbiegających od poprawnej definicjibyły najczęściej zgodne z szeroko rozumianym obrazem pojęcia, często stowarzyszonymz własnościami figury, a nie z jego definicją. To wyobrażenie byłododatkowo zdominowane przez prototypowe zrozumienie trapezu jako czworokątaposiadającego dwie podstawy – w tym ujęciu „podstawy” były utożsamiane„z dokładnie jedną parą boków równoległych”. W artykule zostaładodatkowo przedstawiona skrótowa analiza szkolnych opracowań dotyczącychprezentacji pojęcia trapezu. Na tej podstawie można stwierdzić, że obraz pojęcia„trapez” reprezentowany przez badanych studentów jest ściśle powiązany ztymi prototypowymi reprezentacjami, prezentowanymi w podręcznikach. Wynikibadań sugerują, że wczesne intuicje, wzmacniane pierwotnymi szkolnymireprezentacjami pojęcia są bardzo stabilne i odporne na asymilację wczesnychujęć w ramy szerszych znaczeń. Takie wyniki mogą wyjaśniać niektóre trudnościdotyczące niewłaściwych intuicji związanych z pojęciami geometrycznymi.W związku z tym sugerują potrzebę bardzo wyważonego, długoterminowegoplanowania nauczania matematyki, w którym wprowadzane intuicyjnie pojęciana niższych szczeblach edukacyjnych nie będą blokować tego rozumienia,które w przyszłości będzie funkcjonować w matematyce ujmowanej formalnie.
LA - pol
KW - concept image, definition, formal understanding, persistent prototypical representation, trapezoid
UR - http://eudml.org/doc/293516
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.