On some applications of harmonic measure in the geometric theory of analytic functions

Jaroslav Fuka; Zbigniew Jerzy Jakubowski

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 1, page 57-74
  • ISSN: 0862-7959

How to cite

top

Fuka, Jaroslav, and Jakubowski, Zbigniew Jerzy. "On some applications of harmonic measure in the geometric theory of analytic functions." Mathematica Bohemica 119.1 (1994): 57-74. <http://eudml.org/doc/29352>.

@article{Fuka1994,
abstract = {},
author = {Fuka, Jaroslav, Jakubowski, Zbigniew Jerzy},
journal = {Mathematica Bohemica},
keywords = {harmonic measure; Carathéodory functions; extreme points; support points; coefficient estimates; harmonic measure; Carathéodory functions; extreme points; support points; coefficient estimates},
language = {eng},
number = {1},
pages = {57-74},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some applications of harmonic measure in the geometric theory of analytic functions},
url = {http://eudml.org/doc/29352},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Fuka, Jaroslav
AU - Jakubowski, Zbigniew Jerzy
TI - On some applications of harmonic measure in the geometric theory of analytic functions
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 1
SP - 57
EP - 74
AB -
LA - eng
KW - harmonic measure; Carathéodory functions; extreme points; support points; coefficient estimates; harmonic measure; Carathéodory functions; extreme points; support points; coefficient estimates
UR - http://eudml.org/doc/29352
ER -

References

top
  1. L. V. Ahlfors, Conformal invariants: Topics in geometric function theory, McGraw-Hill, New York, 1973. (1973) Zbl0272.30012MR0357743
  2. C. Carathéodory, 10.1007/BF03014795, Rend. Сirc. Math., Palermo 32 (1911), 193-217. (1911) DOI10.1007/BF03014795
  3. P. L. Duren, Univalent functions. Grundlehren der mathematischen Wissenchaften, 259, 1983. (1983) MR0708494
  4. J. Fuka Z.J. Jakubowski, On certain subclasses of bounded univalent functions, Ann. Рolon. Mth. 55 (1991), 109-115; Proc. of the XІ-th Instructional Сonference on the Theory of Extremal Problems (in Polish), Lódź, 1990, 20-27. (1991) MR1141428
  5. J. Fuka Z. J. Jakubowski, On a certain class of Сarathéodory functions defined by conditions on the circle, in: Сurrent Topics in Analytic Function Theory, editors H.M. Srivastava, S. Owa, Woгld Sci. Publ. Сompany, 94-105; Proc. of the V-th Intern. Сonf. on Сomplex Analysis, Varna, September 15-21, 1991, p. 11; Proc. of the XIII-th Instr. Сonf. on the Theory of Extremal Problems (in Polish), Lódź, 1992, 9-13. (1991) MR1232431
  6. J. Fuka Z. J. Jakubowski, On extreme points of some subclasses of Сarathéodory functions, Сzechoslovak Academy of Sci., Math. lnst., Preprint 12 (1992), 1-9. (1992) MR1232431
  7. J. B. Garnett, Bounded analytic functions, Academic Press, 1981. (1981) Zbl0469.30024MR0628971
  8. D. J. Hallenbeck T.H. MacGregor, Linear Problems and convexity techniques in geometric function theory, Pitman Advanced Publ. Program, 1984. (1984) MR0768747
  9. M. S. Robertson, 10.2307/1968451, Ann. Math. 57 (1936), 374-408. (1936) Zbl0014.16505DOI10.2307/1968451
  10. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974. (1974) Zbl0278.26001MR0344043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.