An a priori bound for the Cauchy problem in Banach space

Ada Ardito; Paolo Ricciardi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1974)

  • Volume: 56, Issue: 4, page 473-481
  • ISSN: 0392-7881

How to cite

top

Ardito, Ada, and Ricciardi, Paolo. "An a priori bound for the Cauchy problem in Banach space." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 56.4 (1974): 473-481. <http://eudml.org/doc/293694>.

@article{Ardito1974,
author = {Ardito, Ada, Ricciardi, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {4},
number = {4},
pages = {473-481},
publisher = {Accademia Nazionale dei Lincei},
title = {An a priori bound for the Cauchy problem in Banach space},
url = {http://eudml.org/doc/293694},
volume = {56},
year = {1974},
}

TY - JOUR
AU - Ardito, Ada
AU - Ricciardi, Paolo
TI - An a priori bound for the Cauchy problem in Banach space
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1974/4//
PB - Accademia Nazionale dei Lincei
VL - 56
IS - 4
SP - 473
EP - 481
LA - eng
UR - http://eudml.org/doc/293694
ER -

References

top
  1. BROWDER, F. (1968) - Non linear operators and non linear equations of evolution in Banach spaces, Proc. Symposium on non linear Functional AnalysisChicago. 
  2. DA PRATO, G. (1971) - Somme d'applications non-linéaires, «Ist. Naz. Alta Mat. Roma Symp. Math.», 7. MR333862
  3. DA PRATO, G. (1972-73) - Seminari di Analisi non lineare, «Ist. Mat. G. Castelnuovo», Roma. 
  4. DA PRATO, G. (1973) - Quelques résultats d'existence unicité et régularité pour un problème de la théorie du controle, «J. Math, pures et appl.», 53. Zbl0289.93027MR358430
  5. IANNELLI, M. (1970) - A note on some non-linear non contraction semigroups, «Boll. U.M.I.», 6, 1015-1025. Zbl0207.14001MR276822
  6. IANNELLI, M. (1970) - On certain classes of semi-linear evolution systems (in press). 
  7. KATO, T. (1965) - Non linear evolution equations in Banach spaces, «Proc. Symp. Appl. Math.», 17, 50-67. MR184099
  8. LADAS, G. and LAKSHMIKANTHAM, V. (1972) - Differential Equations in Abstract Spaces, Academic Press-New-York. Zbl0257.34002MR460832
  9. LIONS, J. L. (1969) - Quelques Méthodes de résolution dés problèmes aux limites non linéaires, Dunod, Paris. MR259693
  10. MARTIN, R. H. (1973) - Liapunov functions and autonomous differential equations in a Banach space, «Math. Systems Theory», 7, 66-72. MR322301DOI10.1007/BF01824808
  11. RICCIARDI, P. and TUBARO, L. (1973) - Local existence for differential equations in Banach space, «Boll. U.M.I.», 8 (4), 306-316. Zbl0297.34060MR333387
  12. SEGAL, I. E. (1963) - Non linear semigroups, «Ann. of Math.», 78, 2 sett. 1963. MR152908DOI10.2307/1970347
  13. TEMAM, R. (1969) - Sur la résolution exacte et approchée d'un problème hyperbolique non linéaire de T. Carleman, «Arch. Rational Mech. Anal.», 35, 5, 351-362. Zbl0189.10504MR251376DOI10.1007/BF00247682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.