A transformation formula relating two Lauricella functions

Hary M. Srivastava; Harold Exton

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1974)

  • Volume: 56, Issue: 1, page 38-42
  • ISSN: 0392-7881

How to cite

top

Srivastava, Hary M., and Exton, Harold. "A transformation formula relating two Lauricella functions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 56.1 (1974): 38-42. <http://eudml.org/doc/293727>.

@article{Srivastava1974,
author = {Srivastava, Hary M., Exton, Harold},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {1},
number = {1},
pages = {38-42},
publisher = {Accademia Nazionale dei Lincei},
title = {A transformation formula relating two Lauricella functions},
url = {http://eudml.org/doc/293727},
volume = {56},
year = {1974},
}

TY - JOUR
AU - Srivastava, Hary M.
AU - Exton, Harold
TI - A transformation formula relating two Lauricella functions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1974/1//
PB - Accademia Nazionale dei Lincei
VL - 56
IS - 1
SP - 38
EP - 42
LA - eng
UR - http://eudml.org/doc/293727
ER -

References

top
  1. BAILEY, W. N., The generating function of Jacobi polynomials, «J. London Math. Soc.», 13, 8-12 (1938). Zbl64.0357.01MR1574535DOI10.1112/jlms/s1-13.1.8
  2. ERDÉLYI, A., Transformations of hypergeometric functions of two variables, «Proc. Roy. Soc. Edinburgh Sect. A.», 62, 378-385 (1948). MR26160
  3. ERDÉLYI, A., MAGNUS, W., OBERHETTINGER, F. and TRICOMI, F. G., Higher transcendental functions, Vol. I, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Zbl0051.30303
  4. GOURSAT, E., Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéométrique, «Ann. Sci. École Norm. Sup. (2)», 10, 3-142 (1881). Zbl13.0267.01MR1508709
  5. LAURICELLA, G., Sulle funzioni ipergeometriche a più variabili, «Rend. Circ. Mat. Palermo», 7, 111-158 (1893). Zbl25.0756.01
  6. SLATER, L. J., Confluent hypergeometric functions, University Press, Cambridge, 1960. Zbl0086.27502MR107026
  7. SRIVASTAVA, H. M., Some integrals representing triple hypergeometric functions, «Rend. Circ. Mat. Palermo ser. II», 16, 99-115 (1967). Zbl0167.34802MR241707DOI10.1007/BF02844089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.