Convergent solutions of nonlinear differential equations

David Lowell Lovelady

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1973)

  • Volume: 54, Issue: 2, page 193-198
  • ISSN: 0392-7881

How to cite

top

Lovelady, David Lowell. "Convergent solutions of nonlinear differential equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 54.2 (1973): 193-198. <http://eudml.org/doc/293804>.

@article{Lovelady1973,
author = {Lovelady, David Lowell},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {2},
number = {2},
pages = {193-198},
publisher = {Accademia Nazionale dei Lincei},
title = {Convergent solutions of nonlinear differential equations},
url = {http://eudml.org/doc/293804},
volume = {54},
year = {1973},
}

TY - JOUR
AU - Lovelady, David Lowell
TI - Convergent solutions of nonlinear differential equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1973/2//
PB - Accademia Nazionale dei Lincei
VL - 54
IS - 2
SP - 193
EP - 198
LA - eng
UR - http://eudml.org/doc/293804
ER -

References

top
  1. BRAUER, F., Global behavior of solutions of ordinary differential equations, «J. Math. Anal. Appl.», 2, 145-158 (1961). Zbl0101.30305MR130423DOI10.1016/0022-247X(61)90051-8
  2. BRAUER, F., Bounds for solutions of ordinary differential equations, «Proc. Amer. Math. Soc.», 14, 36-43 (1963). Zbl0113.06803MR142829DOI10.2307/2033951
  3. COPPEL, W. A., Stability and asymptotic behavior of differential equations, D. C. Heath & Co., Boston1965. Zbl0154.09301MR190463
  4. HALLAM, T. G., A terminal comparison principle for differential inequalities, «Bull. Amer. Math. Soc.», 78, 230-233 (1972). Zbl0243.34018MR288396DOI10.1090/S0002-9904-1972-12932-X
  5. HALLAM, T. G., Convergence of solutions of nonlinear differential equations, «Ann. Mat. Pura Appl.», to appear. Zbl0283.34052MR315233DOI10.1007/BF02413614
  6. HALLAM, T. G. and HEIDEL, J. W., The asymptotic manifolds of a perturbed linear system of differential equations, «Trans. Amer. Math. Soc.», 149, 233-241 (1970). Zbl0186.41502MR257486DOI10.2307/1995674
  7. HALLAM, T. G., LADAS, G. and LAKSHMIKANTHAM, V., On the asymptotic behavior of functional differential equations, «SIAM J. Math. Anal.», 3, 58-64 (1972). Zbl0241.34078MR315247DOI10.1137/0503006
  8. HALLAM, T. G. and LAKSHMIKANTHAM, V., Growth estimates for convergent solutions of ordinary differential equations, «J. Math. Phys. Sci.», 5, 83-88 (1971). Zbl0231.34026MR298127
  9. LAKSHMIKANTHAM, V. and LEELA, S., Differential and integral inequalities, vol. 1, Academic Press, New York1969. Zbl0177.12403MR379933
  10. LOVELADY, D. L., A functional differential equation in a Banach space, «Funkcialaj Ekvacioj», 14, 111-122 (1971). Zbl0231.45016MR304754
  11. LOVELADY, D. L., Asymptotic equivalence for two nonlinear systems, «Math. Systems Theory», 7, 170-175 (1973). Zbl0258.34037MR320454DOI10.1007/BF01762235
  12. LOVELADY, D. L., Global attraction and asymptotic equilibrium for nonlinear ordinary equations, Conference on the theory of ordinary and partial differential equations, pp. 303-307, «Lecture Notes Math.», 280, Springer-Verlag, New York1972. MR425289
  13. LOVELADY, D. L. and MARTIN, R. H., Jr., A global existence theorem for an ordinary differential equation in a Banach space, «Proc. Amer. Math. Soc.», 35, 445-449 (1972). MR303035DOI10.2307/2037626
  14. LOZINSKII, S. M., Error estimates for the numerical integration of ordinary differential equations I, «Isv. Vyss. Ucebn. Zaved. Mat.», (5) 6, 52-90 (1958) (Russian). Zbl0198.21202MR145662
  15. MAMEDOV, J. D., One-sided estimates in the conditions for existence and uniqueness of solutions of the limit Cauchy problem in a Banach space, «Sibirsk. Mat. Ž.», 6, 1190-1196 (1965) (Russian). Zbl0173.43501MR190496
  16. MARTIN, R. H., Jr., A global existence theorem for autonomous differential equations in a Banach space, «Proc. Amer. Math. Soc.», 26, 307-314 (1970). MR264195DOI10.2307/2036395
  17. PAVEL, N., Sur certaines équations differentielles abstraites, «Boll. Un. Mat. Ital.», to appear. MR342807
  18. WAŽEWSKI, T., Sur la limitation des integrales des systèmes d'équations différentielles linéaires ordinaires, «Studia Math.», 10, 48-59 (1948). Zbl0036.05703MR25651DOI10.4064/sm-10-1-48-59
  19. WINTNER, A., Asymptotic equilibria, «Amer. J. Math.», 68, 125-132 (1946). Zbl0063.08289MR14529DOI10.2307/2371745
  20. WINTNER, A., An Abelian lemma concerning asymptotic equilibria, «Amer. J. Math.», 68, 451-454 (1946). Zbl0063.08294MR16812DOI10.2307/2371826
  21. WINTNER, A., On a theorem of Bocher in the theory of ordinary linear differential equations, «Amer. J. Math.», 76, 183-190 (1954). Zbl0055.08104MR58800DOI10.2307/2372408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.