Matrix Substitutions in Summability
- Volume: 54, Issue: 3, page 332-337
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topDawson, David F.. "Matrix Substitutions in Summability." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 54.3 (1973): 332-337. <http://eudml.org/doc/293824>.
@article{Dawson1973,
author = {Dawson, David F.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {3},
number = {3},
pages = {332-337},
publisher = {Accademia Nazionale dei Lincei},
title = {Matrix Substitutions in Summability},
url = {http://eudml.org/doc/293824},
volume = {54},
year = {1973},
}
TY - JOUR
AU - Dawson, David F.
TI - Matrix Substitutions in Summability
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1973/3//
PB - Accademia Nazionale dei Lincei
VL - 54
IS - 3
SP - 332
EP - 337
LA - eng
UR - http://eudml.org/doc/293824
ER -
References
top- AGNEW, R. P., A simple sufficient condition that a method of summability be stronger than convergence, «Bull. Amer. Math. Soc.», 52, 128-132 (1946). Zbl0060.16010MR14488DOI10.1090/S0002-9904-1946-08522-5
- BRUDNO, A., Summation of bounded sequences by matrices, «Mat. Sbornik N. S.», 16, 191-247 (1945). Zbl0061.12102MR12340
- COOKE, R. G., On T-matrices at least as efficient as (C,r) summability, and Fourier-effective methods of summation, «J. London Math. Soc.», 27, 328-337 (1952). Zbl0046.29005MR47795DOI10.1112/jlms/s1-27.3.328
- KNOPP, KONRAD, Theory and application of infinite series, Blackie and Son, English Edition, 1928. Zbl0042.29203MR77665
- TROPPER, A. M., A sufficient condition for a regular matrix to sum a bounded divergent sequence, «Proc. Amer. Math. Soc.», 4, 671-677 (1953). Zbl0052.05503MR56724DOI10.2307/2032396
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.