Sequential convergences on free lattice ordered groups
Mathematica Bohemica (1992)
- Volume: 117, Issue: 1, page 48-54
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJakubík, Ján. "Sequential convergences on free lattice ordered groups." Mathematica Bohemica 117.1 (1992): 48-54. <http://eudml.org/doc/29383>.
@article{Jakubík1992,
abstract = {In this paper the partially ordered set Conv $G$ of all sequential convergences on $G$ is investigated, where $G$ is either a free lattice ordered group or a free abelian lattice ordered group.},
author = {Jakubík, Ján},
journal = {Mathematica Bohemica},
keywords = {free lattice-ordered group; compatible sequential convergences; atom; free abelian lattice ordered group; sequential convergence; free lattice-ordered group; compatible sequential convergences; atom},
language = {eng},
number = {1},
pages = {48-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sequential convergences on free lattice ordered groups},
url = {http://eudml.org/doc/29383},
volume = {117},
year = {1992},
}
TY - JOUR
AU - Jakubík, Ján
TI - Sequential convergences on free lattice ordered groups
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 1
SP - 48
EP - 54
AB - In this paper the partially ordered set Conv $G$ of all sequential convergences on $G$ is investigated, where $G$ is either a free lattice ordered group or a free abelian lattice ordered group.
LA - eng
KW - free lattice-ordered group; compatible sequential convergences; atom; free abelian lattice ordered group; sequential convergence; free lattice-ordered group; compatible sequential convergences; atom
UR - http://eudml.org/doc/29383
ER -
References
top- M. Anderson T. Feil, Lattice-Ordered Groups, An Introduction, Reidel Publ., Dordrecht, 1988. (1988) MR0937703
- S. Bernau, Free abelian lattice groups, Math. Ann. 150(1969), 48-59. (1969) Zbl0157.36801MR0241340
- G. Birkhoff, Lattice Theory, Third Edition, Providence, 1967. (1967) Zbl0153.02501MR0227053
- P. Conrad, 10.1007/BF01431159, Math. Ann. 190 (1971), 306-312. (190) MR0281667DOI10.1007/BF01431159
- P. Conrad, 10.1016/0021-8693(70)90024-4, J. Algebra 16 (1970), 191-203. (1970) Zbl0213.31502MR0270992DOI10.1016/0021-8693(70)90024-4
- P. Conrad, Lattice-Ordered Groups, Tulane Lecture Notes; New Orleans, 1970. (1970) Zbl0258.06011
- R. Frič F. Zanolin, Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 18 (1986), 200-218. (1986) MR0928331
- M. Harminc, Sequential convergences on abelian lattice-ordered groups, Convergence Structures 1984. Mathematical Research, Band 24, Akademie-Verlag, Berlin, 1985, pp. 153-158. (1984) MR0835480
- M. Harminc, The cardinality of the system of all sequential convergences on an abelian lattice ordered group, Czechoslovak Math. J. 31 (1987), 533-546. (1987) MR0913986
- M. Harminc, Sequential convergences on lattice ordered groups, Czechoslov. Math. J 39 (1989), 232-238. (1989) MR0992130
- M. Harminc, Convergences on lattice ordered groups, Dissertation, Math. Inst. Slovak Acad. Sci, 1986. (In Slovak.) (1986)
- M. Harminc J. Jakubík, Maximal convergences and minimal proper convergences in l-groups, Czechoslov. Math. J. 39 (1989), 631-640. (1989) MR1017998
- J. Jakubík, Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272. (1988) MR0977905
- J. Jakubík, Lattice ordered groups having a largest convergence, Czechoslov. Math. J. 39 (1989), 717-729. (1989) MR1018008
- B. M. Koпытов, Рещеточно упорядоченные группы, Mocквa, 1984. (1984) Zbl1063.82528
- J. Novák, On a free convergence group., Proc. Conf. on Convergence Structures, Lawton, Oklahoma, 1980, pp. 97-102. (1980) MR0605123
- E. C. Weinberg, 10.1007/BF01398232, Math. Ann. 151 (1963), 187-199. (1963) Zbl0114.25801MR0153759DOI10.1007/BF01398232
- E. C. Weinberg, 10.1007/BF01362439, Math. Ann. 159 (1965), 217-222. (1965) Zbl0138.26201MR0181668DOI10.1007/BF01362439
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.