Sull'e q u a zio n e funzionale t ( x + k z , y , z ) = f ( x , y , z ) t ( x , y , z )

Santi Valenti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1973)

  • Volume: 54, Issue: 6, page 872-876
  • ISSN: 0392-7881

Abstract

top
A wide class of partial functional equations (all generalizing in a quite natural way the classical recurrence relation for the Γ -function), is considered in § 1, in order to give an existence and unicity theorem for the solution of each of them, provided this solution be a partially lg-convex one. Further, in § 2 is sketched a straightforward method of resolution for an interesting subclass of such a class of equations, only involving simple techniques of finite differences calculus.

How to cite

top

Valenti, Santi. "Sull'e q u a zio n e funzionale $t(x+kz,y,z) = f(x,y,z) t(x,y,z)$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 54.6 (1973): 872-876. <http://eudml.org/doc/293853>.

@article{Valenti1973,
author = {Valenti, Santi},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
number = {6},
pages = {872-876},
publisher = {Accademia Nazionale dei Lincei},
title = {Sull'e q u a zio n e funzionale $t(x+kz,y,z) = f(x,y,z) t(x,y,z)$},
url = {http://eudml.org/doc/293853},
volume = {54},
year = {1973},
}

TY - JOUR
AU - Valenti, Santi
TI - Sull'e q u a zio n e funzionale $t(x+kz,y,z) = f(x,y,z) t(x,y,z)$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
PY - 1973
PB - Accademia Nazionale dei Lincei
VL - 54
IS - 6
SP - 872
EP - 876
LA - ita
UR - http://eudml.org/doc/293853
ER -

References

top
  1. BOHR, H. e MOLLERUP, J., Laerebog i matematisk Analyse, III, 149 (Kopenhagen1922). 
  2. ARTIN, E., Einführung in die Theorie der Gammafunktion, (Leipzig1931). Zbl57.0419.05
  3. WHITTAKER, E. T. e WATSON, G. N., A Course of Modern Analysis, 40 (Cambridge1927). Zbl45.0433.02MR1424469DOI10.1017/CBO9780511608759
  4. VALENTI, S., A general «dynamical» Model for a Class of statistical Distributions (I), «Acta Phys. Pol.», A 39 (1), 3 (1971). 
  5. VALENTI, S., A general «dynamical» Model for a Class of statistical Distributions (II), «Acta Phys. Pol.», A 41 (4), 447 (1972). 
  6. LIENHARD, J. H. e MEYER, P. L., A physical Basis for the generalized Gamma Distribution, «Quart. Appl. Math.», 25 (3), 330 (1967). Zbl0154.19402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.