Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note

Christos Efthymiopoulos

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2015)

  • Volume: 8, Issue: 2, page 191-224
  • ISSN: 1972-7356

How to cite

top

Efthymiopoulos, Christos. "Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 8.2 (2015): 191-224. <http://eudml.org/doc/293986>.

@article{Efthymiopoulos2015,
author = {Efthymiopoulos, Christos},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {191-224},
publisher = {Unione Matematica Italiana},
title = {Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note},
url = {http://eudml.org/doc/293986},
volume = {8},
year = {2015},
}

TY - JOUR
AU - Efthymiopoulos, Christos
TI - Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2015/8//
PB - Unione Matematica Italiana
VL - 8
IS - 2
SP - 191
EP - 224
LA - eng
UR - http://eudml.org/doc/293986
ER -

References

top
  1. AITCHISON, I., MACMANUS, D.A., and SNYDER, T.M., 2004, Understanding Heisenberg's `magical' paper of July 1925: a new look at the calculational details, American J. Phys.72, 1370. Zbl1219.81004MR2093526DOI10.1119/1.1775243
  2. https://www.aip.org/history/heisenberg/p07.htm 
  3. ALI, M.K., 1985, The quantum normal form and its equivalents, J. Math. Phys.26, 2565. MR803802DOI10.1063/1.526775
  4. ARNOLD, V.I., 1963, Small denominators and the problem of stability of motion in classical and celestial mechanics, Russ. Math. Surveys, 18, 9. MR170705
  5. BERRY, M., 1989, Quantum chaology, not quantum chaos, Phys. Scr.40, 335. Zbl1063.81572MR1014859DOI10.1088/0031-8949/40/3/013
  6. BIRKHOFF, G., 1927, Dynamical Systems. American Mathematical Society. Providence. Zbl53.0732.01MR209095
  7. BOCCALETTI, D., and PUCACCO, G., 1998Theory of Orbits Vol II. Perturbative and Geometric Methods, Springer, Berlin. Zbl0927.70002MR1391960DOI10.1007/978-3-662-03319-7
  8. BORN, M., 1935, Atomic Physics, Blackie & Son, Glasgow. 
  9. BORN, M., and JORDAN, P., 1925, Zur Quantenmechanik, Zeitschrift für Physik34, 858; Reprinted in translation in B. L. van der Waerden (Ed.), Sources of Quantum Mechanics, North-Holland, Amsterdam, 1967. 
  10. BORN, M., HEISENBERG, W., and JORDAN, P., 1926, Zur Quantenmechanik II, Zeitschrift für Physik35, 557; Reprinted in translation in B. L. van der Waerden (Ed.), Sources of Quantum Mechanics, North-Holland, Amsterdam, 1967. 
  11. BUCHER, M., 2008, The rise and premature fall of the old quantum theory, ArXiv. 0802.1366. 
  12. CARATI, A., and GALGANI, L., Fondamenti della meccanica quantistica: uno studio storico critico. electronic page http:/www.mat.unimi.it/users/galgani 
  13. CHRISTODOULIDI, H., and EFTHYMIOPOULOS, C., 2013, Low-dimensional q-Tori in FPU Lattices: Dynamics and Localization Properties, Physica D261, 92. Zbl1336.37058MR3144013DOI10.1016/j.physd.2013.07.007
  14. CONTOPOULOS, G., 1960, A third integral of motion in a galaxy, Z. Astrophys., 49, 273. Zbl0099.45007MR114635
  15. CONTOPOULOS, G., 1966, Tables of the third integral, Astrophys. J. Suppl., 13, 503. 
  16. CONTOPOULOS, G., 2002, Order and Chaos in Dynamical Astronomy, Springer, Berlin. Zbl1041.85001MR1988785DOI10.1007/978-3-662-04917-4
  17. CREHAN, P,1990, The proper quantum analogue of the Birkhoff-Gustavson method of normal forms, J. Phys. A Math. Gen.23, 5815. Zbl0728.58033MR1090015
  18. DEPRIT, A., 1969, Canonical Transformations Depending on a Small Parameter, Cel. Mech., 1, 12. Zbl0172.26002MR253611DOI10.1007/BF01230629
  19. DIRAC, P.A.M., 1926, On the theory of Quantum Mechanics, Proc. Roy. Soc. A109, 642. Zbl52.0975.01MR23198
  20. DIRAC, P.A.M., 1930, The Principles of Quantum Mechanics, Oxford Science Publications. Zbl56.0745.05MR23198
  21. DYSON, F.J., 1949, The Radiation Theories of Tomonaga, Schwinger, and Feynman, Phys. Rev.75, 486. Zbl0032.23702MR28203
  22. DYSON, F.J., 1952, Divergence of Perturbation Theory in Quantum Electrodynamics, Phys. Rev.85, 631. Zbl0046.21501MR46927
  23. Attempts to make quantum electrodynamics into a completely solvable theoryhttp://www.webofstories.com/play/freeman.dyson/92 
  24. ECKHARDT, B., 1986, Birkhoff-Gustavson normal form in classical and quantum mechanics, J. Phys. A Math. Gen.19, 2961. Zbl0622.70015MR861216
  25. EFTHYMIOPOULOS, C., 2012, Canonical perturbation theory; stability and diffusion in Hamiltonian systems: applications in dynamical astronomy, in P.M. Cincotta, C.M. Giordano, and C. Efthymiopoulos (Eds), Third La Plata International School on Astronomy and Geophysics, Asociación Argentina de Astronomía, Workshop Series, Vol. 3, p.3-146. 
  26. EFTHYMIOPOULOS, C., and CONTOPOULOS, G., 2006, Chaos in Bohmian Quantum Mechanics, J. Phys. A. Math Gen39, 1819. Zbl1093.81032MR2209303DOI10.1088/0305-4470/39/8/004
  27. ELIASSON, L., 1996, Absolutely Convergent Series Expansions for Quasi Periodic Motions, Math. Phys. Electron. J.2, 1. Zbl0896.34035MR1399458
  28. GIORGILLI, A,1998, Small denominators and exponential stability: from Poincaré to the present time, Rend. Sem. Mat. Fis. Milano, LXVIII, 19. Zbl1024.37039MR1927002DOI10.1007/BF02925829
  29. GUSTAVSON, F.G., 1966, On Constructing Formal Integrals of a Hamiltonian System. Near an Equilibrium Point, Astron. J.71, 670. 
  30. GUTZWILLER, M.C., 1990, Chaos in Classical and Quantum Mechanics, Springer, New York. Zbl0727.70029MR1077246DOI10.1007/978-1-4612-0983-6
  31. HAMILTON, W.R., 1834, On a general method of dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function, Phil. Transactions, Part 2, pp. 247-308 (Mathematical Papers 2, 103). 
  32. HEISENBERG, W., 1925, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik33, 879. 
  33. HÉNON, M., and HEILES, C., 1964, The applicability of the third integral of motion: Some numerical experiments, Astron. J.69, 73. MR158746DOI10.1086/109234
  34. HORI, G.I., 1966, Theory of General Perturbation with Unspecified Canonical Variables, Publ. Astron. Soc. Japan18, 287. 
  35. JACKSON, J.D., 1962, Classical Electrodynamics, John Wiley and Son. MR436782
  36. KOLMOGOROV, A.N., 1954, On the preservation of quasi-periodic motions under a small variation of Hamilton's function, Dokl. Akad. Nauk SSSR, 98, 527. MR68687
  37. LICHTENBERG, A.J., and LIEBERMAN, M.A., 1992, Regular and Chaotic Dynamics, Springer, New York. Zbl0748.70001MR1169466DOI10.1007/978-1-4757-2184-3
  38. LYNDEN-BELL, D., private communication. 
  39. MESSIAH, A., 1961, Quantum Mechanics, Dover Publications. 
  40. MOSER, J., 1962, On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II, 1-20. Zbl0107.29301MR147741
  41. NIKOLAEV, A.S., 1996, On the diagonalization of quantum Birkhoff-Gustavson normal form, J. Math. Phys.37, 2643. Zbl0885.47031MR1390227DOI10.1063/1.531534
  42. POINCARÉ, H., 1892, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris. MR926907
  43. ROBNIK, M., 1984, The algebraic quantisation of the Birkhoff-Gustavson normal form, J. Phys. A Math. Gen.17, 109. Zbl0548.70009MR734112
  44. SCHRÖDINGER, E., 1926, An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. Rev.28, 1049. 
  45. SCHRÖDINGER, E., 1926, Über das Verhältnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen, Annalen der Physik79, 45. 
  46. VON ZEIPEL, H., 1916, Recherches sur le mouvement de petites planètes, Arkiv. Mat. Astron. Physik, II, Nos, 1,3,7,9, 12. Zbl46.1379.01
  47. WEINBERG, S., 1992, Dreams of a Final Theory, Pantheon Books, New York. 
  48. WOOD, W.R., and ALI, M.K., 1987, On the limitations of the Birkhoff-Gustavson normal form approach, J. Phys. A Math. Gen.20, 351. MR874256

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.