Numerical Approximation of Matrix Functions for Fractional Differential Equations

Marina Popolizio

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 793-815
  • ISSN: 0392-4041

Abstract

top
In this paper relevant insights are given on the connection between matrix functions and the solution of differential equations of fractional order. This nexus only recently has been disclosed and is gaining weight in the current research. We present here a review on the basics of fractional calculus and matrix function approximations, together with the main results my coauthors and me have given to the subject in the recent works [13, 14, 15, 16, 32].

How to cite

top

Popolizio, Marina. "Numerical Approximation of Matrix Functions for Fractional Differential Equations." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 793-815. <http://eudml.org/doc/294018>.

@article{Popolizio2013,
abstract = {In this paper relevant insights are given on the connection between matrix functions and the solution of differential equations of fractional order. This nexus only recently has been disclosed and is gaining weight in the current research. We present here a review on the basics of fractional calculus and matrix function approximations, together with the main results my coauthors and me have given to the subject in the recent works [13, 14, 15, 16, 32].},
author = {Popolizio, Marina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {793-815},
publisher = {Unione Matematica Italiana},
title = {Numerical Approximation of Matrix Functions for Fractional Differential Equations},
url = {http://eudml.org/doc/294018},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Popolizio, Marina
TI - Numerical Approximation of Matrix Functions for Fractional Differential Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 793
EP - 815
AB - In this paper relevant insights are given on the connection between matrix functions and the solution of differential equations of fractional order. This nexus only recently has been disclosed and is gaining weight in the current research. We present here a review on the basics of fractional calculus and matrix function approximations, together with the main results my coauthors and me have given to the subject in the recent works [13, 14, 15, 16, 32].
LA - eng
UR - http://eudml.org/doc/294018
ER -

References

top
  1. BENZI, M. and BERTACCINI, D., Block Preconditioning of Real-Valued Iterative Algorithms for Complex Linear Systems, IMA Journal of Numerical Analysis, 28, 598-618 (2008). Zbl1145.65022MR2433214DOI10.1093/imanum/drm039
  2. BERTACCINI, D., Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electronic Transactions on Numerical Analysis, 18, 49-64 (2004). Zbl1066.65048MR2083294
  3. BERTACCINI, D. and POPOLIZIO, M., Adaptive updating techniques for the approximation of functions of large matrices, preprint (2012). 
  4. CODY, W. J., MEINARDUS, G. and VARGA, R. S., Chebyshev rational approximations to e - x in [ 0 , + ) and applications to heat-conduction problems, J. Approximation Theory, 2, 50-65 (1969). Zbl0187.11602MR245224DOI10.1016/0021-9045(69)90030-6
  5. DEL BUONO, N., LOPEZ, L. and PELUSO, R., Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (1), 278-293 (2005). Zbl1108.65037MR2201184DOI10.1137/030600758
  6. DEL BUONO, N., LOPEZ, L. and POLITI, T., Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comput. Simulation, 79 (4), 1284-1297 (2008). Zbl1162.65338MR2487801DOI10.1016/j.matcom.2008.03.011
  7. DENG, W., Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 1510-1522 (2007). Zbl1388.35095MR2442403DOI10.1016/j.jcp.2007.09.015
  8. DIETHELM, K., The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010). Zbl1215.34001MR2680847DOI10.1007/978-3-642-14574-2
  9. GARRAPPA, R., On linear stability of predictor-corrector algorithms for fractional differential equations, International Journal of Computer Mathematics, 87 (10), 2281-2290 (2010). Zbl1206.65197MR2680147DOI10.1080/00207160802624331
  10. GARRAPPA, R., On some generalizations of the implicit Euler method for discontinuous fractional differential equations, Mathematics and Computers in Simulation, , 95 (2014), 213-228. MR3127766DOI10.1016/j.matcom.2012.04.009
  11. GARRAPPA, R., Stability-preserving high-order methods for multiterm fractional differential equations, International Journal of Bifurcation and Chaos, 22 (4) (2012), 1-13. Zbl1258.34011MR2926049DOI10.1142/S0218127412500733
  12. GARRAPPA, R., A family of Adams exponential integrators for fractional linear systems, Computers and Mathematics with Applications, (2013), in print, doi: http://dx.doi.org/10.1016/j.camwa.2013.01.022 Zbl1350.65078MR3089380DOI10.1016/j.camwa.2013.01.022
  13. GARRAPPA, R. and POPOLIZIO, M., On the use of matrix functions for fractional partial differential equations, Math. Comput. Simulation, 81 (5), (2011), 1045-1056. Zbl1210.65162MR2769818DOI10.1016/j.matcom.2010.10.009
  14. GARRAPPA, R. and POPOLIZIO, M., Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl., 62(3) (2011), 876-890 Zbl1228.65235MR2824677DOI10.1016/j.camwa.2011.04.054
  15. GARRAPPA, R. and POPOLIZIO, M., On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (5) (2011), 1085-1097. Zbl1206.65176MR2728050DOI10.1016/j.cam.2010.07.008
  16. GARRAPPA, R. and POPOLIZIO, M., Evaluation of generalized Mittag-Leffler functions on the real line, Adv. Comput. Math., 39 (1) (2013), 205-225. Zbl1272.33020MR3068601DOI10.1007/s10444-012-9274-z
  17. GOLUB, G.H. and VAN LOAN, C.F., Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences (1996). MR1417720
  18. GORENFLO, R. and MAINARDI, F., Some recent advances in theory and simulation of fractional diffusion processes., J. Comput. Appl. Math., 229 (2) (2009), 400-415. Zbl1166.45004MR2527894DOI10.1016/j.cam.2008.04.005
  19. HIGHAM, N. J., Functions of Matrices: Theory and Computation, SIAM (2008). Zbl1167.15001MR2396439DOI10.1137/1.9780898717778
  20. HOCHBRUCK, M. and LUBICH, C., On Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 34 (1987), 1911-1925. Zbl0888.65032MR1472203DOI10.1137/S0036142995280572
  21. HOCHBRUCK, M. and OSTERMANN, A., Exponential integrators, Acta Numerica, 19 (2010), 209-286. Zbl1242.65109MR2652783DOI10.1017/S0962492910000048
  22. KILBAS, A. A., SRIVASTAVA, H. M. and TRUJILLO, J. J., Theory and applications of fractional differential equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006). Zbl1092.45003MR2218073
  23. LINZ, P., Analytical and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics, Philadelphia, PA (1985). Zbl0566.65094MR796318DOI10.1137/1.9781611970852
  24. LOPEZ, L. and SIMONCINI, V., Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal., 44 (2) (2006), 613-635. Zbl1158.65031MR2218962DOI10.1137/05062590
  25. LOPEZ, L. and SIMONCINI, V., Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT, 46 (4) (2006), 813-830. Zbl1107.65039MR2285209DOI10.1007/s10543-006-0096-6
  26. MAGNUS, A. P., Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ``1=9'' problem) by the Carathéodory-Fejér method, Nonlinear numerical methods and rational approximation, 296 (II) (1994), 173-185. MR1307197
  27. MOLER, C. and VAN LOAN, C., Nineteen dubious ways to compute the exponential of a matrix, SIAM Review, 20 (4) (1978), 801-836. Zbl0395.65012MR508383DOI10.1137/1020098
  28. MOLER, C. and VAN LOAN, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45 (1) (2003), 3-49. Zbl1030.65029MR1981253DOI10.1137/S00361445024180
  29. MORET, I., Rational Lanczos approximations to the matrix square root and related functions, Numerical Linear Algebra with Applications, 16 (2009), 431-445. Zbl1224.65124MR2522957DOI10.1002/nla.625
  30. MORET, I. and NOVATI, P., RD-Rational Approximations of the Matrix Exponential, BIT, Numerical Mathematics, 44 (2004), 595-615. Zbl1075.65062MR2106019DOI10.1023/B:BITN.0000046805.27551.3b
  31. MORET, I. and NOVATI, P., On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions, SIAM Journal on Numerical Analysis, 49 (2011), 2144-2164 Zbl1244.65065MR2861713DOI10.1137/080738374
  32. MORET, I. and POPOLIZIO, M., The restarted shift-and-invert Krylov method for matrix functions, Numerical Linear Algebra with Applications, 21 (2014), 68-80. Zbl1324.65079MR3150610DOI10.1002/nla.1862
  33. PETRUSHEV, P.P. and POPOV, V.A., Rational approximation of real function, Cambridge University Press, Cambridge (1987). Zbl0644.41010MR940242
  34. PODLUBNY, I., Fractional differential equations, Mathematics in Science and Engineering, Academic Press Inc., San Diego, CA (1999). Zbl0924.34008MR1658022
  35. PODLUBNY, I. and KACENAK, M., Matlab implementation of the Mittag-Leffler function, available online: http://www.mathworks.com (2005). 
  36. POLITI, T. and POPOLIZIO, M., Schur Decomposition Methods for the Computation of Rational Matrix Functions, Computational science-ICCS 2006. Part IV, Springer, 3994, 708-715 (2006). Zbl1157.65344
  37. POPOLIZIO, M., Tecniche di accelerazione per approssimare l'esponenziale di matrice, La Matematica nella Società e nella Cultura, Rivista dell'Unione Matematica Italiana, Serie I, Vol. II, Agosto (2009), 275-278. MR3558968
  38. POPOLIZIO, M. and SIMONCINI, V., Acceleration Techniques for Approximating the Matrix Exponential Operator, SIAM J. Matrix Analysis and Appl., 30 (2008), 657-683. Zbl1168.65021MR2421464DOI10.1137/060672856
  39. SAAD, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29 (1992), 209-228. Zbl0749.65030MR1149094DOI10.1137/0729014
  40. TREFETHEN, L. N., Rational Chebyshev approximation on the unit disk, Numer. Math., 37 (2) (1981), 297-320 Zbl0443.30046MR623046DOI10.1007/BF01398258
  41. TREFETHEN, L. N., Circularity of the error curve and sharpness of the CF method in complex Chebyshev approximation, SIAM J. Numer. Anal., 20 (6) (1983), 1258-1263. Zbl0551.41042MR723844DOI10.1137/0720097
  42. TREFETHEN, L. N., WEIDEMAN, J. A. C. and SCHMELZER, T., Talbot quadratures and rational approximations, BIT, 46 (3) (2006), 653-670. Zbl1103.65030MR2265580DOI10.1007/s10543-006-0077-9
  43. VAN DEN ESHOF, J. and HOCHBRUCK, M., Preconditioning Lanczos approximations to the matrix exponential, SIAM Journal on Scientific Computing, 27 (2006), 1438-1457. Zbl1105.65051MR2199756DOI10.1137/040605461
  44. WEIDEMAN, J. A. C. and TREFETHEN, L. N., Parabolic and hyperbolic contours for computing the Bromwich integral, Mathematics of Computation, 78 (2007), 1341-1358. Zbl1113.65119MR2299777DOI10.1090/S0025-5718-07-01945-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.