Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 591-605
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChu, Wenchang. "Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 591-605. <http://eudml.org/doc/294019>.
@article{Chu2013,
abstract = {By means of duplicate inverse series relations, we investigate dual relations of four binomial convolution identities. Four classes of reciprocal formulae on binomial convolutions of Hagen-Rothe type are established. They reflect certain “reciprocity” on the Hagen-Rothe-like convolutions in the sense that each binomial summation involved has no closed form in general, but their sum and difference in pairs do have simple expressions in a single term of binomial coefficients.},
author = {Chu, Wenchang},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {591-605},
publisher = {Unione Matematica Italiana},
title = {Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type},
url = {http://eudml.org/doc/294019},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Chu, Wenchang
TI - Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 591
EP - 605
AB - By means of duplicate inverse series relations, we investigate dual relations of four binomial convolution identities. Four classes of reciprocal formulae on binomial convolutions of Hagen-Rothe type are established. They reflect certain “reciprocity” on the Hagen-Rothe-like convolutions in the sense that each binomial summation involved has no closed form in general, but their sum and difference in pairs do have simple expressions in a single term of binomial coefficients.
LA - eng
UR - http://eudml.org/doc/294019
ER -
References
top- ANDREWS, G. E. - BURGE, W. H., Determinant identities, Pacific J. Math., 158, 1 (1993), 1-14. Zbl0793.15001MR1200825
- CHU, W., An Algebraic Identity and Its Application: The unification of some matrix inverse pairs, Pure Math. & Appl., 4, 2 (1993), 175-190. Zbl0795.05015MR1270427
- CHU, W., Inversion Techniques and Combinatorial Identities: A quick introduction to hypergeometric evaluations, Math. Appl., 283 (1994), 31-57. Zbl0830.05006MR1292876
- CHU, W., Binomial convolutions and determinant identities, Discrete Math., 204, 1-3 (1999), 129-153. MR1691866DOI10.1016/S0012-365X(98)00368-9
- CHU, W., Some binomial convolution formulas, Fibonacci Quarterly, 40, 1 (2002), 19- 32. Zbl0999.05002MR1885266
- CHU, W., Duplicate Inverse Series Relations and Hypergeometric Evaluations with , Boll. Un. Mat. Ital., B-7 (2002, Serie VIII), 585-604. Zbl1097.33003MR1934369
- CHU, W., Inversion Techniques and Combinatorial Identities: Balanced Hypergeo- metric Series, Rocky Mountain J. of Math., 32, 2 (2002), 561-587. Zbl1038.33002MR2088091
- CHU, W. - HSU, L. C., Some new applications of Gould-Hsu inversions, J. Combinatorics, Information & System Sciences, 14, 1 (1990), 1-4. Zbl0717.11007MR1068649
- CHU, W. - WEI, C. A., Legendre Inversions and Balanced Hypergeometric Series Identities, Discrete Mathematics, 308, 4 (2008), 541-549. Zbl1246.05016MR2376476DOI10.1016/j.disc.2007.03.031
- GOULD, H. W., Some generalizations of Vandermonde's convolution, Amer. Math. Month., 63, 1 (1956), 84-91. Zbl0072.00702MR75170DOI10.2307/2306429
- GOULD, H. W. - HSU, L. C., Some new inverse series relationsDuke Math. J., 40 (1973), 885-891. Zbl0281.05008MR337652
- GRAHAM, R. L. - KNUTH, D. E. - PATASHNIK, O., Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989. MR1001562
- MERLINI, D. - SPRUGNOLI, R. - VERRI, M. C., Combinatorial sums and implicit Riordan arrays, Discrete Mathematics, 309 (2009), 475-486. Zbl1157.05005MR2473094DOI10.1016/j.disc.2007.12.039
- RIORDAN, J., Combinatorial Identities, John Wiley & Sons, Inc.1968. MR231725
- SPRUGNOLI, R., Riordan arrays and the Abel-Gould identity, Discrete Math., 142 (1995), 213-233. MR1341448DOI10.1016/0012-365X(93)E0220-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.