Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application
Marco Donatelli; Stefano Serra Capizzano
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 2, page 319-347
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDonatelli, Marco, and Serra Capizzano, Stefano. "Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 319-347. <http://eudml.org/doc/294022>.
@article{Donatelli2013,
abstract = {When dealing with large linear systems with a prescribed structure, two key ingredients are important for designing fast solvers: the first is the computational analysis of the structure which is usually inherited from an underlying infinite dimensional problem, the second is the spectral analysis which is often deeply related to a compact symbol, again depending on the infinite dimensional problem of which the linear system is a given approximation. When considering the computational view-point, the first ingredient is useful for designing fast matrix-vector multiplication algorithms, while the second ingredient is essential for designing fast iterative solvers (multigrid, preconditioned Krylov etc.), whose convergence speed is optimal in the Axelsson, Neytcheva sense, i.e., the number of iterations for reaching a preassigned accuracy can be bounded by a pure constant independent of the matrix-size. In this review paper we consider in some details the specific case of multigrid-type techniques for Toeplitz related structures, by emphasizing the role of the structure and of the compact spectral symbol. A sketch of several extensions to other (hidden) structures as those appearing in the numerical approximation of partial differential equations and integral equations is given and critically discussed.},
author = {Donatelli, Marco, Serra Capizzano, Stefano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {319-347},
publisher = {Unione Matematica Italiana},
title = {Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application},
url = {http://eudml.org/doc/294022},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Donatelli, Marco
AU - Serra Capizzano, Stefano
TI - Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 319
EP - 347
AB - When dealing with large linear systems with a prescribed structure, two key ingredients are important for designing fast solvers: the first is the computational analysis of the structure which is usually inherited from an underlying infinite dimensional problem, the second is the spectral analysis which is often deeply related to a compact symbol, again depending on the infinite dimensional problem of which the linear system is a given approximation. When considering the computational view-point, the first ingredient is useful for designing fast matrix-vector multiplication algorithms, while the second ingredient is essential for designing fast iterative solvers (multigrid, preconditioned Krylov etc.), whose convergence speed is optimal in the Axelsson, Neytcheva sense, i.e., the number of iterations for reaching a preassigned accuracy can be bounded by a pure constant independent of the matrix-size. In this review paper we consider in some details the specific case of multigrid-type techniques for Toeplitz related structures, by emphasizing the role of the structure and of the compact spectral symbol. A sketch of several extensions to other (hidden) structures as those appearing in the numerical approximation of partial differential equations and integral equations is given and critically discussed.
LA - eng
UR - http://eudml.org/doc/294022
ER -
References
top- ARICÒ, A. - DONATELLI, M., A V-cycle Multigrid for multilevel matrix algebras: proof of optimality, Numer. Math., 105, 4 (2007), 511-547. Zbl1114.65033MR2276759DOI10.1007/s00211-006-0049-7
- ARICÒ, A. - DONATELLI, M. - SERRA CAPIZZANO, S., V-cycle optimal convergence for certain (multilevel) structured linear system, SIAM J. Matrix Anal. Appl., 26, 1 (2004), 186-214. Zbl1105.65322MR2112856DOI10.1137/S0895479803421987
- AXELSSON, G. - NEYTCHEVA, M., The algebraic multilevel iteration methods - theory and applications, Proceedings of the 2nd. Int Coll. on Numerical Analysis, D. Bainov Ed., VSP1994, Bulgaria, August 1993. Zbl0845.65012MR1455926
- BECKERMANN, B. - SERRA CAPIZZANO, S., On the asymptotic spectrum of Finite Elements matrices, SIAM J. Numer. Anal., 45, 2 (2007), 746-769. Zbl1140.65080MR2300295DOI10.1137/05063533X
- BINI, D. - CAPOVANI, M., Spectral and computational properties of band simmetric Toeplitz matrices, Linear Algebra Appl., 52/53 (1983), 99-125. Zbl0549.15005MR709346DOI10.1016/0024-3795(83)80009-3
- BINI, D. - FAVATI, P., On a matrix algebra related to the discrete Hartley transform, SIAM J. Matrix Anal. Appl., 14, 2 (1993), 500-507. Zbl0773.65029MR1211803DOI10.1137/0614035
- BRAMBLE, J. H., Multigrid methods, volume 294 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1993. Zbl0786.65094MR1247694
- CHAN, R. H. - CHAN, T. F. - WANG, W. L., Multigrid for differential-convolution problems arising in image processing, Proc. Workshop on Scientific Computing, G. Golub, S.H. Lui, F. Luk, R. Plemmons Eds, Springer (1999), 58-72. Zbl0922.65097MR1729650
- CHAN, R. H. - CHANG, Q. - SUN, H., Multigrid method for ill-conditioned symmetric Toeplitz systems, SIAM J. Sci. Comp., 19, 2 (1998), 516-529. Zbl0916.65029MR1618824DOI10.1137/S1064827595293831
- CHAN, R. H. - NG, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427-482. Zbl0863.65013MR1409592DOI10.1137/S0036144594276474
- CHAN, R. H. - DONATELLI, M. - SERRA CAPIZZANO, S. - TABLINO POSSIO, C., Application of multigrid techniques to image restoration problems,, in Proc. SPIE, 46th Annual Meeting, F. Luk Ed, SPIE, 4791 (2002), 210-221.
- CHAN, R. H. - SERRA CAPIZZANO, S. - TABLINO POSSIO, C., Two-Grid methods for banded linear systems from DCT III algebra, Numer. Linear Algebra Appl., 12, 2/3 (2005), 241-249. Zbl1164.65341MR2125635DOI10.1002/nla.399
- CHANG, Q. - JIN, X. - SUN, H., Convergence of the multigrid method for ill-conditioned block toeplitz systems, BIT, 41, 1 (2001), 179-190. Zbl0991.65033MR1829668DOI10.1023/A:1021978020255
- CHENG, L. - WANG, H. - ZHANG, Z., The solution of ill-conditioned symmetric Toeplitz systems via two-grid and wavelet methods, Comput. Math. Appl., 46 (2003), 793-804. Zbl1051.65030MR2020438DOI10.1016/S0898-1221(03)90142-8
- DONATELLI, M., A Multigrid method for restoration and regularization of images with Dirichlet boundary conditions, in Proc. SPIE, 48th Annual Meeting, F. Luk Ed, SPIE, 5205 (2004), 380-389.
- DONATELLI, M., A Multigrid method for image restoration with Tikhonov regularization., Numer. Linear Algebra Appl., 12 (2005), 715-729. Zbl1164.68445MR2172672DOI10.1002/nla.446
- DONATELLI, M., An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices, Numer. Linear Algebra Appl., 17 (2010), 179-197. Zbl1240.65353MR2650207DOI10.1002/nla.704
- DONATELLI, M., An iterative multigrid regularization method for Toeplitz discrete ill-posed problems, Numer. Math. Theor. Meth. Appl., 5 (2012), 43-61. Zbl1265.65074MR2872586
- DONATELLI, M. - SERRA CAPIZZANO, S., On the regularizing power of multigrid-type algorithms, SIAM J. Sci. Comput., 27, 6 (2006), 2053-2076. Zbl1103.65043MR2211439DOI10.1137/040605023
- DONATELLI, M. - SERRA CAPIZZANO, S., Filter factor analysis of an iterative multilevel regularizing method, Electron. Trans. Numer. Anal., 29 (2007/2008), 163-177. Zbl1171.65369MR2494953
- DONATELLI, M. - SERRA CAPIZZANO, S. - SESANA, D., Multigrid methods for Toeplitz linear systems with different size reduction, BIT, 52, 2 (2012), 305-327. Zbl1251.65047MR2931352DOI10.1007/s10543-011-0356-y
- ESPAÑ OL, M. I. - KILMER, M. E., Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices, SIAM J. Sci. Comput., 32, 1 (2010), 299-319. Zbl1228.65060MR2599779DOI10.1137/080715780
- FIORENTINO, G. - SERRA CAPIZZANO, S., Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991), 283-305. Zbl0778.65021MR1219617DOI10.1007/BF02575816
- FIORENTINO, G. - SERRA CAPIZZANO, S., Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comp., 17, 4 (1996), 1068-1081. Zbl0858.65039MR1404861DOI10.1137/S1064827594271512
- FISCHER, R. HUCKLE, T., Multigrid methods for anisotropic BTTB systems, Linear Algebra Appl.417 (2006), 314-334. Zbl1101.65034MR2250314DOI10.1016/j.laa.2006.02.032
- HANSEN, P. C. - NAGY, J. - O'LEARY, D. P., Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, PA, 2006. MR2271138DOI10.1137/1.9780898718874
- HEMKER, P. W., On the order of prolongations and restrictions in multigrid procedures, J. Comput. Appl. Math., 32 (1990), 423-429. Zbl0717.65098MR1090888DOI10.1016/0377-0427(90)90047-4
- HEINZ, E. - HANKE, M. - NEUBAUER, A., Regularization of inverse problems, Mathematics and its Applications, Kluwer Academic Publishers, 1996. Zbl0859.65054MR1408680
- HUCKLE, T., Compact Fourier analysis for designing multigrid methods, SIAM J. Sci. Comput.31 (2008), 644-666. Zbl1186.65037MR2460793DOI10.1137/070702564
- HUCKLE, T. - STAUDACHER, J., Multigrid preconditioning and Toeplitz matrices, Electr. Trans. Numer. Anal., 13 (2002), 81-105. Zbl1065.65063MR1961200
- HUCKLE, T. - STAUDACHER, J., Multigrid methods for block Toeplitz matrices with small size blocks, BIT, 46 (2006), 61-83, Zbl1103.65035MR2214848DOI10.1007/s10543-006-0047-2
- KALOUPTSIDIS, N. - CARAYANNIS, G. - MANOLAKIS, D.Fast algorithms for block Toeplitz matrices with Toeplitz entries, Signal Process., 6 (1984), 77-81. MR754759
- MORIGI, S. - REICHEL, L. - SGALLARI, F. - SHYSHKOV, A., Cascadic multiresolution methods for image deblurring, SIAM J. Imaging Sci., 1 (2008), 51-74. Zbl1144.65092MR2475825DOI10.1137/070694065
- RUGE, J. W. - STÜBEN, K., Algebraic Multigrid, in Frontiers in Applied Mathemathics: Multigrid Methods, S. McCormick Ed. SIAM, Philadelphia (PA) (1987), 73-130. MR972752DOI10.1137/1.9781611971057
- SERRA CAPIZZANO, S., Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT, 34, 4 (1994), 579-594. Zbl0823.65030MR1430910DOI10.1007/BF01934269
- SERRA CAPIZZANO, S., Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences, Numer. Math., 92, 3 (2002), 433-465. Zbl1013.65026MR1930386DOI10.1007/s002110100331
- SERRA CAPIZZANO, S., Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations, Linear Algebra Appl., 366, 1 (2003), 371-402. Zbl1028.65109MR1987730DOI10.1016/S0024-3795(02)00504-9
- SERRA CAPIZZANO, S., A note on anti-reflective boundary conditions and fast deblurring models, SIAM J. Sci. Comput., 25, 4 (2004), 1307-1325. Zbl1062.65152MR2045058DOI10.1137/S1064827502410244
- SERRA CAPIZZANO, S., The GLT class as a Generalized Fourier Analysis and applications, Linear Algebra Appl., 419, 1 (2006), 180-233. Zbl1109.65032MR2263117DOI10.1016/j.laa.2006.04.012
- SERRA CAPIZZANO, S. - TABLINO POSSIO, C., Multigrid Methods for Multilevel Circulant Matrices, SIAM J. Sci. Comp., 26, 1 (2005), 55-85. Zbl1079.65033MR2114334DOI10.1137/S1064827501388509
- SERRA CAPIZZANO, S. - TYRTYSHNIKOV, E., Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21, 2 (1999), 431-439. Zbl0952.65037MR1718339DOI10.1137/S0895479897331941
- TABLINO POSSIO, C., V-cycle optimal convergence for DCT-III matrices, Numerical methods for structured matrices and applications, Oper. Theory Adv. Appl., 199 (2010), 377-396. Zbl1203.65228MR2656837DOI10.1007/978-3-7643-8996-3_17
- TILLI, P., Locally Toeplitz matrices: spectral theory and applications, Linear Algebra Appl., 278 (1998), 91-120. Zbl0934.15009MR1637331DOI10.1016/S0024-3795(97)10079-9
- TROTTENBERG, U. - OOSTERLEE, C. W. - SCHÜLLER, A., Multigrid, Academic Press, 2001. MR1807961
- TYRTYSHNIKOV, E., Circulant precondictioners with unbounded inverse, Linear Algebra Appl., 216 (1995), 1-23. Zbl0821.65013MR1319972DOI10.1016/0024-3795(93)00092-E
- TYRTYSHNIKOV, E., A unifying approach to some old and new theorems on pre-condictioning and clustering, Linear Algebra Appl., 232 (1996), 1-43. Zbl0841.15006MR1366576DOI10.1016/0024-3795(94)00025-5
- VARGA, R. S., Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, 1962. Zbl0133.08602MR158502
- VOGEL, C. R., Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002. Zbl1008.65103MR1928831DOI10.1137/1.9780898717570
- XU, J., Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 4 (1992), 581-613. Zbl0788.65037MR1193013DOI10.1137/1034116
- YAVNEH, I., Coarse-grid correction for nonelliptic and singular perturbation problems, SIAM J. Sci. Comp., 19, 5 (1998), 1682-1699. Zbl0918.65076MR1618757DOI10.1137/S1064827596310998
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.