Molteplicity of Solutions for Sturm-Liouville Problems
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 725-734
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topD'Aguì, Giuseppina. "Molteplicity of Solutions for Sturm-Liouville Problems." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 725-734. <http://eudml.org/doc/294023>.
@article{DAguì2013,
abstract = {The existence of multiple solutions to a Sturm-Liouville boundary value problem is presented. The approach adopted is based on multiple critical points theorems.},
author = {D'Aguì, Giuseppina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {725-734},
publisher = {Unione Matematica Italiana},
title = {Molteplicity of Solutions for Sturm-Liouville Problems},
url = {http://eudml.org/doc/294023},
volume = {6},
year = {2013},
}
TY - JOUR
AU - D'Aguì, Giuseppina
TI - Molteplicity of Solutions for Sturm-Liouville Problems
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 725
EP - 734
AB - The existence of multiple solutions to a Sturm-Liouville boundary value problem is presented. The approach adopted is based on multiple critical points theorems.
LA - eng
UR - http://eudml.org/doc/294023
ER -
References
top- BRÉZIS, H., Analyse Functionelle - Théorie et Applications, Masson, Paris, 1983.
- BONANNO, G. and CANDITO, P., Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations244 (2008), 3031-3059. Zbl1149.49007MR2420513DOI10.1016/j.jde.2008.02.025
- BONANNO, G. and D'AGUÌ, G., A Neumann boundary value problem for the Sturm-Liouville Equation, Applied Mathematics and Computations, 208, (2009), 318-327. Zbl1176.34020MR2493824DOI10.1016/j.amc.2008.12.029
- BONANNO, G. and MARANO, S.A., On the structure of the critical set of non- differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1-10. Zbl1194.58008MR2604276DOI10.1080/00036810903397438
- BONANNO, G. and MOLICA BISCI, G., Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl.2009 (2009) 1-20. Zbl1177.34038MR2487254DOI10.1155/2009/670675
- BONANNO, G., Multiple solutions for a Neumann boundary value problem, J. Nonlinear and Convex Anal.4 (2003), 287-290. Zbl1042.34034MR1999269
- CANDITO, P., Infinitely many solutions to a Neumann problem for ellictic equations involving the p-Laplacian and with discontinuous nonlinearities, Proc. Edinb. Math. Soc.45 (2002), 397-409. Zbl1035.35040MR1912648DOI10.1017/S0013091501000189
- D'AGUÌ, G., Infinitely many solutions for a double Sturm-Liouville problem, Journal of Global Optimization, 54 (2012), 619-625. Zbl1403.34026MR2988202DOI10.1007/s10898-011-9781-3
- D'AGUÌ, G. and SCIAMMETTA, A., Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612-5619. Zbl1277.35171MR2942940DOI10.1016/j.na.2012.05.009
- DAI, G., Infinitely many soluions for a Neumann-Type differential inclusion problem involving the p(x)-Laplacian, Nonlinear Anal., 70, Issue 6, (2009), 2297- 2305. Zbl1170.35561MR2498314DOI10.1016/j.na.2008.03.009
- FAN, X. and JI, C., Existence of Infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, J. Math. Anal. Appl.334 (2007), 248-260. Zbl1157.35040MR2332553DOI10.1016/j.jmaa.2006.12.055
- LI, C., The existence of Infinitely many solutions of a class of nonlinear elliptic equations with a Neumann boundary conditions for both resonance and oscillation problems, Nonlinear Anal.54 (2003), 431-443. Zbl1126.35320MR1978420DOI10.1016/S0362-546X(03)00100-7
- LI, C. and LI, S., Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary conditions, J. Math. Anal. Appl.298 (2004), 14-32. Zbl1127.35014MR2085488DOI10.1016/j.jmaa.2004.01.017
- MARANO, S. and MOTREANU, D., Infinitely many Critical points of Non-Differentiable Functions and Applications to the Neumann-Type problem involving the p-Laplacian, J. Differential Equations182 (2002), 108-120. Zbl1013.49001MR1912071DOI10.1006/jdeq.2001.4092
- RICCERI, B., A general variational principle and some of its applications, J. Comput. Appl. Math.133 (2000), 401-410. Zbl0946.49001MR1735837DOI10.1016/S0377-0427(99)00269-1
- RICCERI, B., Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc.33 (2001), 331-340. Zbl1035.35031MR1817772DOI10.1017/S0024609301008001
- SUN, J.-P., LI, W.-T. and CHENG, S.S., Three positive solutions for second-order Neumann boundary value problems, Appl. Math. Letters17 (2004), 1079-1084. Zbl1061.34014MR2087758DOI10.1016/j.aml.2004.07.012
- SUN, J.-P. and LI, W.-T., Multiple positive solutions to second-order Neumann boundary value problems, Appl. Math. Comput.146 (2003), 187-194. Zbl1041.34013MR2007778DOI10.1016/S0096-3003(02)00535-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.