The Dynamics of Risk Beyond Convexity
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 2, page 441-457
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMaggis, Marco. "The Dynamics of Risk Beyond Convexity." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 441-457. <http://eudml.org/doc/294024>.
@article{Maggis2013,
abstract = {We outline the history of Risk Measures from the original formulation given by Artzner Delbaen Eber and Heath until the more recent research on quasiconvex Risk Measures. We therefore present some novel results on quasiconvex Risk Measures in the conditional setting, focusing on two different approaches: the vector space compared to the module approach. In particular the second one will guarantee a complete duality theory which is a key ingredient in the representation of risk preferences.},
author = {Maggis, Marco},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {441-457},
publisher = {Unione Matematica Italiana},
title = {The Dynamics of Risk Beyond Convexity},
url = {http://eudml.org/doc/294024},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Maggis, Marco
TI - The Dynamics of Risk Beyond Convexity
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 441
EP - 457
AB - We outline the history of Risk Measures from the original formulation given by Artzner Delbaen Eber and Heath until the more recent research on quasiconvex Risk Measures. We therefore present some novel results on quasiconvex Risk Measures in the conditional setting, focusing on two different approaches: the vector space compared to the module approach. In particular the second one will guarantee a complete duality theory which is a key ingredient in the representation of risk preferences.
LA - eng
UR - http://eudml.org/doc/294024
ER -
References
top- ALIPRANTIS, C. D. - BORDER, K. C., Infinite dimensional analysis, Springer, Berlin, third edition, 2006. A hitchhiker's guide. Zbl1156.46001MR2378491
- ARTZNER, P. - DELBAEN, F. - EBER, J.-M. - HEATH, D., Coherent measures of risk, Math. Finance, 9, n. 3 (1999), 203-228. Zbl0980.91042MR1850791DOI10.1111/1467-9965.00068
- BERNOULLI, D., Exposition of a new theory on the measurement of risk, Econometrica, 22 (1954), 23-36. Zbl0055.12004MR59834DOI10.2307/1909829
- CERREIA-VIOGLIO, S. - MACCHERONI, F. - MARINACCI, M. - MONTRUCCHIO, L., Complete monotone quasiconcave duality, Math. Op. Res.36 (2) (2011), 321-339. Zbl1241.26009MR2828762DOI10.1287/moor.1110.0483
- CERREIA-VIOGLIO, S. - MACCHERONI, F. - MARINACCI, M. - MONTRUCCHIO, L., Risk measures: rationality and diversification, Math. Finance, 21 (4) (2011), 743-774. Zbl1246.91029MR2838583DOI10.1111/j.1467-9965.2010.00450.x
- DETLEFSEN, K. - SCANDOLO, G., Conditional and dynamic convex risk measures, Finance Stoch., 9 (4) (2005), 539-561. Zbl1092.91017MR2212894DOI10.1007/s00780-005-0159-6
- EL KAROUI, N. - RAVANELLI, C., Cash sub-additive risk measures and interest rate ambiguity, Math. Finance, 19(4) (2009), 561-590. Zbl1184.91111MR2583520DOI10.1111/j.1467-9965.2009.00380.x
- FILIPOVIČ, D. - KUPPER, M. - VOGELPOTH, N., Separation and duality in locally -convex modules, J. Funct. Anal.256 (12) (2009), 3996-4029. Zbl1180.46055MR2521918DOI10.1016/j.jfa.2008.11.015
- FÖLLMER, H. - SCHIED, A., Convex measures of risk and trading constraints, Finance Stoch.6 (4) (2002), 429-447. Zbl1041.91039MR1932379DOI10.1007/s007800200072
- FRITTELLI, M. - MAGGIS, M., Conditional Certainty Equivalent, Int. J. Theor. Appl. Finance, 14(1) (2011), 41-59. Zbl1213.91170MR2780777DOI10.1142/S0219024911006255
- FRITTELLI, M. - MAGGIS, M., Dual representation of quasi-convex conditional maps., SIAM J. Financial Math., 2 (2011), 357-382. Zbl1232.46067MR2801179DOI10.1137/09078033X
- FRITTELLI, M. - MAGGIS, M., Complete duality for quasiconvex dynamic risk measures on modules of the -type (2012). Preprint. Zbl1302.46062MR3176684DOI10.1515/strm-2013-1163
- FRITTELLI, M. - MAGGIS, M., Conditionally evenly convex sets and evenly quasi-convex maps (2012). Preprint. Zbl1328.46007MR3153576DOI10.1016/j.jmaa.2013.11.044
- FRITTELLI, M. - ROSAZZA GIANIN, E., Putting order in risk measures, J. Bank Fin.26 (7) (2002), 1473-1486.
- GUO, T., Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal.258 (2010), 3024-3047. Zbl1198.46058MR2595733DOI10.1016/j.jfa.2010.02.002
- MAGGIS, M., On quasiconvex conditional maps, volume 4. Ledizioni, Math. Sciences Series, 2010. Duality results and applications to finance.
- MARKOVITZ, H., Portfolio selection, J. Finance, 7 (1) (1952), 77-91.
- SHARPE, W. F., Capital asset prices: a theory of market equilibrium under conditions of risk, J. Finance, 19 (3) (1964), 425-442.
- VOLLE, M., Duality for the level sum of quasiconvex functions and applications, Control, ESAIM Control Optim. Calc. Var.3 (1998), 329-343. Zbl0904.49023MR1641843DOI10.1051/cocv:1998114
- VON NEUMANN, J. - MORGENSTERN, O., Theory of games and economic behavior, Princeton University Press, Princeton, NJ, 2004. Reprint of the 1980 edition. Zbl1109.91001MR2081849
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.