Factorization in the Self-Idealization of a PID
Gyu Whan Chang; Daniel Smertnig
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 2, page 363-377
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topChang, Gyu Whan, and Smertnig, Daniel. "Factorization in the Self-Idealization of a PID." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 363-377. <http://eudml.org/doc/294032>.
@article{Chang2013,
abstract = {Let $D$ be a principal ideal domain and $R(D) = \\{(\begin\{smallmatrix\} a & b \\ 0 & a \end\{smallmatrix\}) \mid a, b \in D\\}$ be its self-idealization. It is known that $R(D)$ is a commutative noetherian ring with identity, and hence $R(D)$ is atomic (i.e., every nonzero nonunit can be written as a finite product of irreducible elements). In this paper, we completely characterize the irreducible elements of $R(D)$. We then use this result to show how to factorize each nonzero nonunit of $R(D)$ into irreducible elements. We show that every irreducible element of $R(D)$ is a primary element, and we determine the system of sets of lengths of $R(D)$.},
author = {Chang, Gyu Whan, Smertnig, Daniel},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {363-377},
publisher = {Unione Matematica Italiana},
title = {Factorization in the Self-Idealization of a PID},
url = {http://eudml.org/doc/294032},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Chang, Gyu Whan
AU - Smertnig, Daniel
TI - Factorization in the Self-Idealization of a PID
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 363
EP - 377
AB - Let $D$ be a principal ideal domain and $R(D) = \{(\begin{smallmatrix} a & b \\ 0 & a \end{smallmatrix}) \mid a, b \in D\}$ be its self-idealization. It is known that $R(D)$ is a commutative noetherian ring with identity, and hence $R(D)$ is atomic (i.e., every nonzero nonunit can be written as a finite product of irreducible elements). In this paper, we completely characterize the irreducible elements of $R(D)$. We then use this result to show how to factorize each nonzero nonunit of $R(D)$ into irreducible elements. We show that every irreducible element of $R(D)$ is a primary element, and we determine the system of sets of lengths of $R(D)$.
LA - eng
UR - http://eudml.org/doc/294032
ER -
References
top- ADAMS, D. - ARDILA, R. - HANNASCH, D. - KOSH, A. - MCCARTHY, H. - PONOMARENKO, V. - ROSENBAUM, R., Bifurcus semigroups and rings, Involve, 2 (2009), 351-356. Zbl1190.20046MR2551131DOI10.2140/involve.2009.2.351
- ANDERSON, D. D. - VALDES-LEON, S., Factorization in commutative rings with zero divisors, Rocky Mountain J. Math.26 (1996), 439-480. Zbl0865.13001MR1406490DOI10.1216/rmjm/1181072068
- D. D. ANDERSON (ed.), Factorization in Integral Domains, Lect. Notes Pure Appl. Math., vol. 189, Marcel Dekker, 1997. MR1460767
- ANDERSON, D. D. - WINDERS, M., Idealization of a Module, J. Commutative Algebra, 1 (2009), 3-56. Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
- BAETH, N. R. - WIEGAND, R. A., Factorization theory and decomposition of modules, Am. Math. Mon.120 (2013), 3-34. Zbl1271.13023MR3007364DOI10.4169/amer.math.monthly.120.01.003
- S. T. CHAPMAN (ed.), Arithmetical Properties of Commutative Rings and Monoids, Lect. Notes Pure Appl. Math., vol. 241, Chapman & Hall/CRC, 2005. Zbl1061.13001MR2140683DOI10.1201/9781420028249
- FREI, C. - FRISCH, S., Non-unique factorization of polynomials over residue class rings of the integers, Comm. Algebra, 39 (2011), 1482-1490. Zbl1223.13014MR2804688DOI10.1080/00927872.2010.549158
- GEROLDINGER, A. - HALTER-KOCH, F., Non-unique factorizations, vol. 278 of Pure and Applied Mathematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory. Zbl1113.11002MR2194494DOI10.1201/9781420003208
- GEROLDINGER, A. - HASSLER, W., Arithmetic of Mori domains and monoids, J. Algebra329 (2008) 3419-3463. Zbl1195.13022MR2408326DOI10.1016/j.jalgebra.2007.11.025
- GEROLDINGER, A. - HASSLER, W., Local tameness of v-noetherian monoids, J. Pure Appl. Algebra, 212 (2008), 1509-1524. Zbl1133.20047MR2391663DOI10.1016/j.jpaa.2007.10.020
- HUCKABA, J., Commutative rings with zero divisors, Dekker, New York, 1988. Zbl0637.13001MR938741
- REINHART, A., On integral domains that are C-monoids, Houston J. Math., to appear. Zbl1285.13005MR3164706
- SALCE, L., Transfinite self-idealization and commutative rings of triangular matrices, in Commutative algebra and its applications, 333-347, Walter de Gruyter, Berlin, 2009. Zbl1177.13012MR2640314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.