Geometrical Dualities for Łukasiewicz Logic
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 749-763
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSpada, Luca. "Geometrical Dualities for Łukasiewicz Logic." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 749-763. <http://eudml.org/doc/294035>.
@article{Spada2013,
abstract = {This article develops a general dual adjunction between MV-algebras (the algebraic equivalents of Łukasiewicz logic) and subspaces of Tychonoff cubes, endowed with the transformations that are definable in the language of MV-algebras. Such a dual adjunction restricts to a duality between semisimple MV-algebras and closed subspaces of Tychonoff cubes. Further the duality theorem for finitely presented objects is obtained from the general adjunction by a further specialisation. The treatment is aimed at emphasising the generality of the framework considered here in the prototypical case of MV-algebras.},
author = {Spada, Luca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {749-763},
publisher = {Unione Matematica Italiana},
title = {Geometrical Dualities for Łukasiewicz Logic},
url = {http://eudml.org/doc/294035},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Spada, Luca
TI - Geometrical Dualities for Łukasiewicz Logic
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 749
EP - 763
AB - This article develops a general dual adjunction between MV-algebras (the algebraic equivalents of Łukasiewicz logic) and subspaces of Tychonoff cubes, endowed with the transformations that are definable in the language of MV-algebras. Such a dual adjunction restricts to a duality between semisimple MV-algebras and closed subspaces of Tychonoff cubes. Further the duality theorem for finitely presented objects is obtained from the general adjunction by a further specialisation. The treatment is aimed at emphasising the generality of the framework considered here in the prototypical case of MV-algebras.
LA - eng
UR - http://eudml.org/doc/294035
ER -
References
top- AGUZZOLI, S., A note on the representation of McNaughton lines by basic literals, Soft Comput., 2 (1998), 3, 111-115.
- BIGARD, A., KEIMEL, K. and WOLFENSTEIN, S., Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin, 1977. MR552653
- BURRIS, S. and SANKAPPANAVAR, H. P., A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981. Zbl0478.08001MR648287
- CHANG, C. C., Algebraic analysis of many valued logic, Trans. Amer. Math. Soc, 88 (1958), 467-490. Zbl0084.00704MR94302DOI10.2307/1993227
- CHANG, C. C., A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc., 93 (1959), 74-80. Zbl0093.01104MR122718DOI10.2307/1993423
- CIGNOLI, R. L. O., D'OTTAVIANO, I. M. L. and MUNDICI, D., Algebraic foundations of many-valued reasoning, vol. 7 of Trends in Logic-Studia Logica Library, Kluwer Academic Publishers, Dordrecht, 2000. MR1786097DOI10.1007/978-94-015-9480-6
- ENGELKING, R., General topology, vol. 6 of Sigma Series in Pure Mathematics, second edn., Heldermann Verlag, Berlin, 1989. MR1039321
- ERNÉ, M., KOSLOWSKI, J., MELTON, A. and STRECKER, G. E., A primer on Galois connections, in Papers on general topology and applications (Madison, WI, 1991), vol. 704 of Ann. New York Acad. Sci., New York Acad. Sci., New York, 1993, pp. 103-125. MR1277847DOI10.1111/j.1749-6632.1993.tb52513.x
- JOHNSTONE, P. T., Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1986. Zbl0586.54001MR861951
- MARRA, V. and SPADA, L., Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras. Annals of Pure and Applied Logic, 164 (2013), 192-210, doi: 10.1016/j.apal.2012.10.001. Zbl1275.03099MR3001543DOI10.1016/j.apal.2012.10.001
- MARRA, V., and SPADA, L., The dual adjunction between MV-algebras and Tychonoff spaces, Studia Logica, 100 (2012), 1-26. Zbl1252.06006MR2923539DOI10.1007/s11225-012-9377-z
- MUNDICI, D., Advanced Łukasiewicz Calculus and MV-algebras, vol. 35 of Trends in Logic-Studia Logica Library, Springer, New York, 2011. Zbl1235.03002MR2815182DOI10.1007/978-94-007-0840-2
- ROURKE, C. P. and SANDERSON, B. J., Introduction to piecewise-linear topology, Springer-Verlag, Berlin, 1982. Zbl0477.57003MR665919
- STONE, M. H., The theory of representations for Boolean algebras, Trans. Amer. Math. Soc., 40 (1936), 1, 37-111. Zbl62.0033.04MR1501865DOI10.2307/1989664
- STONE, M. H., Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 3, 375-481. Zbl63.1173.01MR1501905DOI10.2307/1989788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.