Space-Time Resonances and the Null Condition for Wave Equations

Fabio Pusateri

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 513-529
  • ISSN: 0392-4041

Abstract

top
In this note we describe a recent result obtained by the author and Shatah [26], concerning global existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be a generalization of the null condition given by Klainerman in his seminal work [21].

How to cite

top

Pusateri, Fabio. "Space-Time Resonances and the Null Condition for Wave Equations." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 513-529. <http://eudml.org/doc/294036>.

@article{Pusateri2013,
abstract = {In this note we describe a recent result obtained by the author and Shatah [26], concerning global existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be a generalization of the null condition given by Klainerman in his seminal work [21].},
author = {Pusateri, Fabio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {513-529},
publisher = {Unione Matematica Italiana},
title = {Space-Time Resonances and the Null Condition for Wave Equations},
url = {http://eudml.org/doc/294036},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Pusateri, Fabio
TI - Space-Time Resonances and the Null Condition for Wave Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 513
EP - 529
AB - In this note we describe a recent result obtained by the author and Shatah [26], concerning global existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be a generalization of the null condition given by Klainerman in his seminal work [21].
LA - eng
UR - http://eudml.org/doc/294036
ER -

References

top
  1. ALINHAC, S., Semilinear hyperbolic systems with blowup at infinity. Indiana Univ. Math. J., 55 (3) (2006),1209-1232. Zbl1122.35068MR2244605DOI10.1512/iumj.2006.55.2671
  2. CHOQUET-BRUHAT, Y. - CHRISTODOULOU, D., Existence of global solutions of the classical equations of gauge theories, C. R. Acad. Sci. Paris Sér. I Math., 293, no. 3 (1981), 195-199. Zbl0478.58027MR635980
  3. CHRISTODOULOU, D., Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math., 39 (2) (1986), 267-282. Zbl0612.35090MR820070DOI10.1002/cpa.3160390205
  4. COIFMAN, R. - MEYER, Y., Au delà des opérateurs pseudo-différentiels. Astérisque, 57 (1978). Zbl0483.35082MR518170
  5. GERMAIN, P., Global existence for coupled Klein-Gordon equations with different speeds. ArXiv:1005.5238v1, 2010. Zbl1255.35162MR2915571DOI10.1007/s10440-011-9662-2
  6. GERMAIN, P. - MASMOUDI, N., Global existence for the Euler-Maxwell system, ArXiv:1107.1595v1, 2011. MR3239096DOI10.24033/asens.2219
  7. GERMAIN, P. - MASMOUDI, N. - SHATAH, J., Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. IMRN, (3) (2009), 414-432. Zbl1156.35087MR2482120DOI10.1093/imrn/rnn135
  8. GERMAIN, P. - MASMOUDI, N. - SHATAH, J., Global solutions for the gravity surface water waves equation in dimension 3. Ann. of Math., 175, no. 2 (2012), 691-754. Zbl1241.35003MR2993751DOI10.4007/annals.2012.175.2.6
  9. GERMAIN, P. - MASMOUDI, N. - SHATAH, J., Global solutions for a class of 2d quadratic Schrödinger equations. J. Math. Pures Appl., 97, no. 5 (2012), 505-543. Zbl1244.35134MR2914945DOI10.1016/j.matpur.2011.09.008
  10. GERMAIN, P. - MASMOUDI, N. - SHATAH, J., Global existence for capillary waves. To appear in Comm. Pure Appl. Math., 2012. Zbl1244.35134MR3318019DOI10.1002/cpa.21535
  11. JOHN, F., Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 28 (1-3) (1979), 235-268. Zbl0406.35042MR535704DOI10.1007/BF01647974
  12. JOHN, F., Blow-up for quasilinear wave equations in three space dimensions. Comm. on Pure Appl. Math., 34 (1) (1981), 29-51. Zbl0453.35060MR600571DOI10.1002/cpa.3160340103
  13. JOHN, F. - KLAINERMAN, S., Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math., 37 (4) (1984), 443-455. Zbl0599.35104MR745325DOI10.1002/cpa.3160370403
  14. KATAYAMA, S., Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions. arXiv:1101.3657, J. Hyperbolic Differ. Equ.9 (2) (2012), 263-323. Zbl1254.35142MR2928109DOI10.1142/S0219891612500099
  15. KATAYAMA, S. - YOKOYAMA, K., Global small amplitude solutions to systems of non-linear wave equations with multiple speeds. Osaka J. Math., 43, no. 2 (2006), 283-326. Zbl1195.35225MR2262337
  16. KATO, J. - PUSATERI, F., A new proof of long range scattering for critical nonlinear Schrödinger equations. Diff. Int. Equations, 24 (9-10) (2011), 923-940. MR2850346
  17. KEEL, M. - SMITH, H. - SOGGE, C., Almost global existence for some semilinear wave equations. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math., 87 (2002), 265-279. MR1945285DOI10.1007/BF02868477
  18. KEEL, M. - SMITH, H. - SOGGE, C., Almost global existence for quasilinear wave equations in three space dimensions. J. Amer. Math. Soc., 17 (1) (2004), 109-153. Zbl1055.35075MR2015331DOI10.1090/S0894-0347-03-00443-0
  19. KLAINERMAN, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38 (3) (1985), 321-332. Zbl0635.35059MR784477DOI10.1002/cpa.3160380305
  20. KLAINERMAN, S., Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math., 38 (5) (1985), 631-641. Zbl0597.35100MR803252DOI10.1002/cpa.3160380512
  21. KLAINERMAN, S., The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). Lectures in Appl. Math., 23 (1986), 293-326. MR837683
  22. KLAINERMAN, S. - SIDERIS, T., On almost global existence for nonrelativistic wave equations in 3D. Comm. Pure Appl. Math., 49 (3) (1996), 307-321. Zbl0867.35064MR1374174DOI10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H
  23. LINDBLAD, H., Global solutions of nonlinear wave equations. Comm. Pure Appl. Math.45 (9) (1992), 1063-1096,. Zbl0840.35065MR1177476DOI10.1002/cpa.3160450902
  24. LINDBLAD, H. - RODNIANSKI, I., The weak null condition for Einstein's equations. C. R. Acad. Sci. Paris. Ser. I, 336 (11) (2003), 901-906. Zbl1045.35101MR1994592DOI10.1016/S1631-073X(03)00231-0
  25. LINDBLAD, H. - RODNIANSKI, I., Global existence for the Einstein vacuum equations in wave coordinates. Comm. Math. Phys., 256(1) (2005), 43-110. Zbl1081.83003MR2134337DOI10.1007/s00220-004-1281-6
  26. PUSATERI, F. - SHATAH, J., Space-time resonances and the null condition for (first order) systems of wave equations. arXiv:1109.5662 (2011), Comm. Pure and Appl. Math., 66 (2) (2013), 1495-1540. Zbl1284.35261MR3084697DOI10.1002/cpa.21461
  27. SIDERIS, T., The null condition and global existence of nonlinear elastic waves. Invent. Math.123, no. 2 (1996), 323-342. Zbl0844.73016MR1374204DOI10.1007/s002220050030
  28. SIDERIS, T., Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. of Math. (2), 151, no. 2 (2000), 849-874. Zbl0957.35126MR1765712DOI10.2307/121050
  29. SIDERIS, T. - TU, S., Global existence for systems of nonlinear wave equations in 3D with multiple speeds. SIAM J. Math. Anal.33, no. 2 (2001), 477-488. Zbl1002.35091MR1857981DOI10.1137/S0036141000378966
  30. SHATAH, J., Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math., 38 (5) (1985), 685-696. Zbl0597.35101MR803256DOI10.1002/cpa.3160380516
  31. SHATAH, J. - STRUWE, M., Geometric wave equations, volume 2 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York, 1998. Zbl0993.35001MR1674843
  32. SIMON, J., A wave operator for a nonlinear Klein-Gordon equation. Lett. Math. Phys.7, no. 5 (1983), 387-398. MR719852DOI10.1007/BF00398760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.