Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling

Simone Scacchi

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 699-714
  • ISSN: 0392-4041

Abstract

top
We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential v and the extracellular electric potential u e and it consists of a system of a parabolic non-linear partial differential equation (PDE) for v and an elliptic linear PDE for u e . The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.

How to cite

top

Scacchi, Simone. "Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 699-714. <http://eudml.org/doc/294041>.

@article{Scacchi2013,
abstract = {We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential $v$ and the extracellular electric potential $u_\{e\}$ and it consists of a system of a parabolic non-linear partial differential equation (PDE) for $v$ and an elliptic linear PDE for $u_\{e\}$. The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.},
author = {Scacchi, Simone},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {699-714},
publisher = {Unione Matematica Italiana},
title = {Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling},
url = {http://eudml.org/doc/294041},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Scacchi, Simone
TI - Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 699
EP - 714
AB - We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential $v$ and the extracellular electric potential $u_{e}$ and it consists of a system of a parabolic non-linear partial differential equation (PDE) for $v$ and an elliptic linear PDE for $u_{e}$. The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.
LA - eng
UR - http://eudml.org/doc/294041
ER -

References

top
  1. AXELSSON, O., Iterative Solution Methods, Cambridge University Press, 1994. Zbl0795.65014MR1276069DOI10.1017/CBO9780511624100
  2. BALAY, S. - BUSCHELMAN, K. - GROPP, W. D. - KAUSHIK, D. - KNEPLEY, M. - CURFMAN MCINNES, L. - SMITH, B. F. - ZHANG, H., PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002. 
  3. BOULAKIA, M. - CAZEAU, S. - FERNANDEZ, M. A. - GERBEAU, J.-F. - ZEMZEMI, N., Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng., 38 (3) (2010), 1071-1097. 
  4. CLAYTON, R. H. - BERNUS, O. - CHERRY, E. M. - DIERCKX, H. - FENTON, F. H. - MIRABELLA, L. - PANFILOV, A. V. - SACHSE, F. B. - SEEMANN, G. - ZHANG, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progr. Biophys. Molec. Biol., 104 (2011), 22-48. 
  5. COLLI FRANZONE, P. - PAVARINO, L. F., A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci., 14 (6) (2004), 883-911. Zbl1068.92024MR2069498DOI10.1142/S0218202504003489
  6. COLLI FRANZONE, P. - PAVARINO, L. F. - TACCARDI, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci., 197 (1) (2005), 33-66. Zbl1074.92004MR2167484DOI10.1016/j.mbs.2005.04.003
  7. COLLI FRANZONE, P. - DEUFLHARD, P. - ERDMANN, B. - LANG, J. - PAVARINO, L. F., Adaptivity in space and time for reaction-diffusion systems in Electrocardiology. SIAM J. Sci. Comput., 28 (3) (2006), 942-962. Zbl1114.65110MR2240798DOI10.1137/050634785
  8. DEUFLHARD, P. - ERDMANN, B. - ROITZSCH, R. - LINES, G. T., Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Visual. Sci., 12 (5) (2009), 201-205. MR2507225DOI10.1007/s00791-008-0088-y
  9. ETHIER, M. - BOURGAULT, Y., Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal., 46 (5) (2008), 2443-2468. Zbl1182.92009MR2421042DOI10.1137/070680503
  10. GERARDO GIORDA, L. - MIRABELLA, L. - NOBILE, F. - PEREGO, M. - VENEZIANI, A., A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys., 228 (10) (2009), 3625-3639. Zbl1187.92053MR2511070DOI10.1016/j.jcp.2009.01.034
  11. GERARDO GIORDA, L. - PEREGO, M. - VENEZIANI, A., Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology, Math. Model. Numer. Anal., 45 (2011), 309-334. Zbl1274.92022MR2804641DOI10.1051/m2an/2010057
  12. HENSON, V. - YANG, U., BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numerical Math., 41 (2002), 155-177. Zbl0995.65128MR1908755DOI10.1016/S0168-9274(01)00115-5
  13. Hypre High Performance Preconditioners Users Manual Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Tech. Rep. Software Version: 1.6.0, Jul. 27, 2001. 
  14. LEGRICE, I. J. - SMAILL, B. H. - CHAI, L. Z. - EDGAR, S. G. - GAVIN, J. B. - HUNTER, P. J., Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol., 269 (38) (1995), H571-H582. 
  15. LINGE, S. - SUNDNES, J. - HANSLIEN, M. - LINES, G. T. - TVEITO, A., Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A, 367 (1895) (2009), 1931-1950. Zbl1185.65169MR2512073DOI10.1098/rsta.2008.0306
  16. LUO, C. - RUDY, Y., A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res., 68 (6) (1991), 1501-1526. 
  17. MUNTEANU, M. - PAVARINO, L. F., Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Mod. Meth. Appl. Sci., 19 (7) (2009), 1065-1097. Zbl1178.65116MR2553178DOI10.1142/S0218202509003723
  18. MUNTEANU, M. - PAVARINO, L. F. - SCACCHI, S., A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (5) (2009), 3861-3883. Zbl1205.65261MR2556566DOI10.1137/08074355X
  19. MURILLO, M. - CAI, X.-C., A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebra Appl., 11 (2-3) (2004), 261-277. Zbl1114.65112MR2065816DOI10.1002/nla.381
  20. PAVARINO, L. F. - SCACCHI, S., Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (1) (2008), 420-443. Zbl1185.65179MR2460784DOI10.1137/070706148
  21. PAVARINO, L. F. - SCACCHI, S., Parallel Multilevel Schwarz and Block Preconditioners for the Bidomain Parabolic-Parabolic and Parabolic-Elliptic Formulations, SIAM J. Sci. Comput., 33 (4) (2011),1897-1919. Zbl1233.65070MR2831039DOI10.1137/100808721
  22. PENNACCHIO, M. - SAVARÉ, G. - COLLI FRANZONE, P., Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal., 37 (4) (2006), 1333-1370. Zbl1113.35019MR2192297DOI10.1137/040615249
  23. PENNACCHIO, M. - SIMONCINI, V., Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Appl. Numer. Math., 59 (2009), 3033-3050. Zbl1171.92017MR2560833DOI10.1016/j.apnum.2009.08.001
  24. PENNACCHIO, M. - SIMONCINI, V., Fast structured AMG preconditioning for the bidomain model in electrocardiology. SIAM J. Sci. Comput., 33 (2) (2011), 721-745. Zbl1227.92034MR2785969DOI10.1137/100796364
  25. PLANK, G. - LIEBMANN, M. - WEBER DOS SANTOS, R. - VIGMOND, E. J. - HAASE, G., Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Engrg., 54 (4) (2007), 585-596. 
  26. POTSE, M. - DUBÈ, B. - RICHER, J. - VINET, A. - GULRAJANI, R., A comparison of Monodomain and Bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng., 53 (12) (2006), 2425-2434. 
  27. SCACCHI, S., A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Engrg., 197 (45-48) (2008), 4051-4061. Zbl1194.78048MR2458128DOI10.1016/j.cma.2008.04.008
  28. SCACCHI, S., A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comp. Meth. Appl. Mech. Engrg., 200 (5-8) (2011), 717-725. Zbl1225.92011MR2749030DOI10.1016/j.cma.2010.09.016
  29. SKOUIBINE, K. B. - TRAYANOVA, N. - MOORE, P., A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci., 166 (1) (2000), 85-100. Zbl0963.92019
  30. SMITH, B. F. - BJØRSTAD, P. - GROPP, W. D., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996. MR1410757
  31. SUNDNES, J. - LINES, G. T. - MARDAL, K. A. - TVEITO, A., Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Meth. Biomech. Biomed. Engrg., 5 (6) (2002), 397-409. 
  32. SUNDNES, J. - LINES, G. T. - TVEITO, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci., 194 (2) (2005), 233-248. Zbl1063.92018MR2142490DOI10.1016/j.mbs.2005.01.001
  33. TOSELLI, A. - WIDLUND, O. B., Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, Vol. 34. Springer-Verlag, Berlin, 2004. Zbl1069.65138MR2104179DOI10.1007/b137868
  34. VENERONI, M., Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Meth. Appl. Sci., 29 (2006), 1631-1661. Zbl1108.35090MR2248561DOI10.1002/mma.740
  35. VENERONI, M., Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlin. Anal.-Real World Appl., 10 (2) (2009), 849-868. Zbl1167.35403MR2474265DOI10.1016/j.nonrwa.2007.11.008
  36. VIGMOND, E. J. - AGUEL, F. - TRAYANOVA, N. A., Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Engrg., 49 (2002), 1260-1269. 
  37. VIGMOND, E. J. - WEBER DOS SANTOS, R. - PRASSL, A. J. - DEO, M. - PLANK, G., Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol., 96 (2008), 3-18. 
  38. WHITELEY, J. P., An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Engrg., 53 (11) (2006), 2139- 2147. 
  39. ZAMPINI, S., Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer. Math., 123 (2) (2013), 363-393. Zbl1395.65096MR3010184DOI10.1007/s00211-012-0488-2
  40. ZAMPINI, S., Dual-primal methods for the cardiac bidomain model. Math. Mod. Meth. Appl. Sci., in press. Zbl1291.92007MR3163396DOI10.1142/S0218202513500632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.