Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 699-714
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topScacchi, Simone. "Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 699-714. <http://eudml.org/doc/294041>.
@article{Scacchi2013,
abstract = {We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential $v$ and the extracellular electric potential $u_\{e\}$ and it consists of a system of a parabolic non-linear partial differential equation (PDE) for $v$ and an elliptic linear PDE for $u_\{e\}$. The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.},
author = {Scacchi, Simone},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {699-714},
publisher = {Unione Matematica Italiana},
title = {Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling},
url = {http://eudml.org/doc/294041},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Scacchi, Simone
TI - Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 699
EP - 714
AB - We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential $v$ and the extracellular electric potential $u_{e}$ and it consists of a system of a parabolic non-linear partial differential equation (PDE) for $v$ and an elliptic linear PDE for $u_{e}$. The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.
LA - eng
UR - http://eudml.org/doc/294041
ER -
References
top- AXELSSON, O., Iterative Solution Methods, Cambridge University Press, 1994. Zbl0795.65014MR1276069DOI10.1017/CBO9780511624100
- BALAY, S. - BUSCHELMAN, K. - GROPP, W. D. - KAUSHIK, D. - KNEPLEY, M. - CURFMAN MCINNES, L. - SMITH, B. F. - ZHANG, H., PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.
- BOULAKIA, M. - CAZEAU, S. - FERNANDEZ, M. A. - GERBEAU, J.-F. - ZEMZEMI, N., Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng., 38 (3) (2010), 1071-1097.
- CLAYTON, R. H. - BERNUS, O. - CHERRY, E. M. - DIERCKX, H. - FENTON, F. H. - MIRABELLA, L. - PANFILOV, A. V. - SACHSE, F. B. - SEEMANN, G. - ZHANG, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progr. Biophys. Molec. Biol., 104 (2011), 22-48.
- COLLI FRANZONE, P. - PAVARINO, L. F., A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci., 14 (6) (2004), 883-911. Zbl1068.92024MR2069498DOI10.1142/S0218202504003489
- COLLI FRANZONE, P. - PAVARINO, L. F. - TACCARDI, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci., 197 (1) (2005), 33-66. Zbl1074.92004MR2167484DOI10.1016/j.mbs.2005.04.003
- COLLI FRANZONE, P. - DEUFLHARD, P. - ERDMANN, B. - LANG, J. - PAVARINO, L. F., Adaptivity in space and time for reaction-diffusion systems in Electrocardiology. SIAM J. Sci. Comput., 28 (3) (2006), 942-962. Zbl1114.65110MR2240798DOI10.1137/050634785
- DEUFLHARD, P. - ERDMANN, B. - ROITZSCH, R. - LINES, G. T., Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Visual. Sci., 12 (5) (2009), 201-205. MR2507225DOI10.1007/s00791-008-0088-y
- ETHIER, M. - BOURGAULT, Y., Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal., 46 (5) (2008), 2443-2468. Zbl1182.92009MR2421042DOI10.1137/070680503
- GERARDO GIORDA, L. - MIRABELLA, L. - NOBILE, F. - PEREGO, M. - VENEZIANI, A., A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys., 228 (10) (2009), 3625-3639. Zbl1187.92053MR2511070DOI10.1016/j.jcp.2009.01.034
- GERARDO GIORDA, L. - PEREGO, M. - VENEZIANI, A., Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology, Math. Model. Numer. Anal., 45 (2011), 309-334. Zbl1274.92022MR2804641DOI10.1051/m2an/2010057
- HENSON, V. - YANG, U., BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numerical Math., 41 (2002), 155-177. Zbl0995.65128MR1908755DOI10.1016/S0168-9274(01)00115-5
- Hypre High Performance Preconditioners Users Manual Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Tech. Rep. Software Version: 1.6.0, Jul. 27, 2001.
- LEGRICE, I. J. - SMAILL, B. H. - CHAI, L. Z. - EDGAR, S. G. - GAVIN, J. B. - HUNTER, P. J., Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol., 269 (38) (1995), H571-H582.
- LINGE, S. - SUNDNES, J. - HANSLIEN, M. - LINES, G. T. - TVEITO, A., Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A, 367 (1895) (2009), 1931-1950. Zbl1185.65169MR2512073DOI10.1098/rsta.2008.0306
- LUO, C. - RUDY, Y., A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res., 68 (6) (1991), 1501-1526.
- MUNTEANU, M. - PAVARINO, L. F., Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Mod. Meth. Appl. Sci., 19 (7) (2009), 1065-1097. Zbl1178.65116MR2553178DOI10.1142/S0218202509003723
- MUNTEANU, M. - PAVARINO, L. F. - SCACCHI, S., A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (5) (2009), 3861-3883. Zbl1205.65261MR2556566DOI10.1137/08074355X
- MURILLO, M. - CAI, X.-C., A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebra Appl., 11 (2-3) (2004), 261-277. Zbl1114.65112MR2065816DOI10.1002/nla.381
- PAVARINO, L. F. - SCACCHI, S., Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (1) (2008), 420-443. Zbl1185.65179MR2460784DOI10.1137/070706148
- PAVARINO, L. F. - SCACCHI, S., Parallel Multilevel Schwarz and Block Preconditioners for the Bidomain Parabolic-Parabolic and Parabolic-Elliptic Formulations, SIAM J. Sci. Comput., 33 (4) (2011),1897-1919. Zbl1233.65070MR2831039DOI10.1137/100808721
- PENNACCHIO, M. - SAVARÉ, G. - COLLI FRANZONE, P., Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal., 37 (4) (2006), 1333-1370. Zbl1113.35019MR2192297DOI10.1137/040615249
- PENNACCHIO, M. - SIMONCINI, V., Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Appl. Numer. Math., 59 (2009), 3033-3050. Zbl1171.92017MR2560833DOI10.1016/j.apnum.2009.08.001
- PENNACCHIO, M. - SIMONCINI, V., Fast structured AMG preconditioning for the bidomain model in electrocardiology. SIAM J. Sci. Comput., 33 (2) (2011), 721-745. Zbl1227.92034MR2785969DOI10.1137/100796364
- PLANK, G. - LIEBMANN, M. - WEBER DOS SANTOS, R. - VIGMOND, E. J. - HAASE, G., Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Engrg., 54 (4) (2007), 585-596.
- POTSE, M. - DUBÈ, B. - RICHER, J. - VINET, A. - GULRAJANI, R., A comparison of Monodomain and Bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng., 53 (12) (2006), 2425-2434.
- SCACCHI, S., A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Engrg., 197 (45-48) (2008), 4051-4061. Zbl1194.78048MR2458128DOI10.1016/j.cma.2008.04.008
- SCACCHI, S., A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comp. Meth. Appl. Mech. Engrg., 200 (5-8) (2011), 717-725. Zbl1225.92011MR2749030DOI10.1016/j.cma.2010.09.016
- SKOUIBINE, K. B. - TRAYANOVA, N. - MOORE, P., A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci., 166 (1) (2000), 85-100. Zbl0963.92019
- SMITH, B. F. - BJØRSTAD, P. - GROPP, W. D., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996. MR1410757
- SUNDNES, J. - LINES, G. T. - MARDAL, K. A. - TVEITO, A., Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Meth. Biomech. Biomed. Engrg., 5 (6) (2002), 397-409.
- SUNDNES, J. - LINES, G. T. - TVEITO, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci., 194 (2) (2005), 233-248. Zbl1063.92018MR2142490DOI10.1016/j.mbs.2005.01.001
- TOSELLI, A. - WIDLUND, O. B., Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, Vol. 34. Springer-Verlag, Berlin, 2004. Zbl1069.65138MR2104179DOI10.1007/b137868
- VENERONI, M., Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Meth. Appl. Sci., 29 (2006), 1631-1661. Zbl1108.35090MR2248561DOI10.1002/mma.740
- VENERONI, M., Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlin. Anal.-Real World Appl., 10 (2) (2009), 849-868. Zbl1167.35403MR2474265DOI10.1016/j.nonrwa.2007.11.008
- VIGMOND, E. J. - AGUEL, F. - TRAYANOVA, N. A., Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Engrg., 49 (2002), 1260-1269.
- VIGMOND, E. J. - WEBER DOS SANTOS, R. - PRASSL, A. J. - DEO, M. - PLANK, G., Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol., 96 (2008), 3-18.
- WHITELEY, J. P., An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Engrg., 53 (11) (2006), 2139- 2147.
- ZAMPINI, S., Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer. Math., 123 (2) (2013), 363-393. Zbl1395.65096MR3010184DOI10.1007/s00211-012-0488-2
- ZAMPINI, S., Dual-primal methods for the cardiac bidomain model. Math. Mod. Meth. Appl. Sci., in press. Zbl1291.92007MR3163396DOI10.1142/S0218202513500632
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.