Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 3, page 643-672
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBenvegnù, Alberto, and Spera, Mauro. "Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 643-672. <http://eudml.org/doc/294043>.
@article{Benvegnù2013,
abstract = {In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.},
author = {Benvegnù, Alberto, Spera, Mauro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {643-672},
publisher = {Unione Matematica Italiana},
title = {Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections},
url = {http://eudml.org/doc/294043},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Benvegnù, Alberto
AU - Spera, Mauro
TI - Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 643
EP - 672
AB - In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.
LA - eng
UR - http://eudml.org/doc/294043
ER -
References
top- ADEM, A., COHEN, D. and COHEN, F.R., On representations and K-theory of the braid groups, Math. Ann., 326 (2003), 515-542. Zbl1066.20042MR1992276DOI10.1007/s00208-003-0435-8
- AOMOTO, K., Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Tokio, 25 (1978), 149-156. Zbl0416.32020MR509582
- ARAVIND, P.K., Borromean entanglement of the GHZ state, in Potentiality, Entanglement and Passion-at-a-Distance eds R.S. Cohen, M. Horne, J. Stachel (Kluwer Academic Publishers, Boston, 1997), pp. 53-59. Zbl1006.81504MR1739812DOI10.1007/978-94-017-2732-7_4
- ARNOL'D, V. I., The cohomology ring of colored braids, Mat. Zametki, 5 No 2 (1969), 227-231. (Russian) English transl. in Trans. Moscow Math. Soc., 21 (1970), 30-52. MR242196
- ARTIN, E., Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ., 4 (1925), 42-72; Theory of braids, Ann. Math.,48 (1947), 101-126. MR3069440DOI10.1007/BF02950718
- BAR-NATAN, D., On the Vassiliev knot invariants, Topology, 34 (1995), 423-472. Zbl0898.57001MR1318886DOI10.1016/0040-9383(95)93237-2
- BENVEGNÙ, A. and SPERA, M., On Uncertainty, Braiding and Entanglement in Geometric Quantum Mechanics, Rev. Math. Phys., 18 (2006), 1075-1102. MR2287641DOI10.1142/S0129055X06002863
- BERGER, M., Third order link invariants, J. Phys. A: Math. Gen., 23 (1990), 2787- 2793. Zbl0711.57008MR1062985
- BERGER, M., Third order braid invariants, J. Phys. A: Math. Gen., 24 (1991), 4027- 4036. Zbl0747.57002MR1126646
- BERGER, M., Hamiltonian dynamics generated by Vassiliev invariants, J. Phys. A: Math. Gen., 34 (2001), 1363-1374. Zbl0984.70016MR1819937DOI10.1088/0305-4470/34/7/310
- BERGER, M., Topological Invariants in braid theory, Lett. Math. Phys., 55 (2001), 181-192. Zbl0986.57010MR1843442DOI10.1023/A:1010979823190
- BIGELOW, S., The Burau representation is not faithful for n = 5, Geometry & Topology, 3 (1999), 397-404. Zbl0942.20017MR1725480DOI10.2140/gt.1999.3.397
- BIRMAN, J.S. and BRENDLE, T.E., Braids: A Survey, Ch.2 in Handbook of Knot Theory eds. W. Menasco and M. Thistlethwaite (Elsevier B.V. 2005), pp. 19-103. Zbl1094.57006MR2179260DOI10.1016/B978-044451452-3/50003-4
- CHEN, K.-T., Iterated path integrals, Bull. Am. Math. Soc., 83 (1977), 831-879. Zbl0389.58001MR454968DOI10.1090/S0002-9904-1977-14320-6
- CHEN, K.-T., Collected Papers of K.-T. Chen (eds P. Tondeur and R. Hain), Contemporary Mathematicians (Birkäuser, Boston, MA2001). Zbl0977.01042MR1847673
- EVANS, N.W. and BERGER, M.A., A hierarchy of linking integrals, in Topological Aspects of the Dynamics of Fluids and Plasmas, eds. H.K. Moffatt et al. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 237-248. Zbl0799.57004MR1232234
- HAIN, R., The Geometry of the Mixed Hodge Structure on the Fundamental Group, Proc. Symp. Pure Math., 46 (1987), 247-282. MR927984
- KASSEL, C. and TURAEV, V., Braid groups (Springer, Berlin, 2008). Zbl1208.20041MR2435235DOI10.1007/978-0-387-68548-9
- KAUFFMAN, L. and LOMONACO, S., Quantum entanglement and topological entanglement, New J. Phys., 4 (2002) 73.1-73.18. MR1963025DOI10.1088/1367-2630/4/1/373
- KOHNO, T., Série de Poincaré-Koszul associé aux groupes de tresses pures, Inv. Math., 82 (1985), 57-75. Zbl0574.55009MR808109DOI10.1007/BF01394779
- KOHNO, T., Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier, Grenoble, 37 (1987), 139-160. Zbl0634.58040MR927394
- KOHNO, T., Linear representations of braid groups and classical Yang-Baxter equations, Cont. Math., 78 (1988), 339-363. Zbl0661.20026MR975088DOI10.1090/conm/078/975088
- KOHNO, T., Conformal Field Theory and Topology (AMS, Providence, RI, 2002). Zbl1024.81001MR1905659
- KONTSEVICH, M., Vassiliev's knot invariants, Adv. Sov. Math.16, Part 2 (1993), 137-150, (AMS Providence, RI). Zbl0839.57006MR1237836
- LAWRENCE, R. E., Homological representations of the Hecke algebra, Commun. Math. Phys., 135 (1990), 141-191. Zbl0716.20022MR1086755
- LE, T.Q.T. and MURAKAMI, J., Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl., 62 (1995), 193- 206. Zbl0839.57007MR1320252DOI10.1016/0166-8641(94)00054-7
- MOSTOW, G.D., Braids, hypergeometric functions, and lattices, Bull. Am. Math. Soc., 16 (1987), 225-246. Zbl0639.22005MR876959DOI10.1090/S0273-0979-1987-15510-8
- PAPI, P. and PROCESI, C., Invarianti di nodi, Quaderno U.M.I. 45 (Pitagora, Bologna, 1998) (in Italian).
- PENNA, V. and SPERA, M., Higher order linking numbers, curvature and holonomy, J. Knot Theory Ram., 11 (2002), 701-723. Zbl1027.57007MR1918809DOI10.1142/S0218216502001913
- SPERA, M., A survey on the differential and symplectic geometry of linking numbers, Milan J. Math., 74 (2006), 139-197. Zbl1165.58004MR2278732DOI10.1007/s00032-006-0061-5
- TAVARES, J.N., Chen Integrals, Generalized Loops and Loop Calculus, Int. J. Mod. Phys. A, 9 (1994), 4511-4548. Zbl0988.58500MR1295759DOI10.1142/S0217751X94001795
- WECHSUNG, G., Functional Equations of Hyperlogarithms, in Structural properties of Polylogarithms (ed. L. Lewin), Ch. 8, (AMSProvidence, RI, 1991), pp. 171-184. MR1148379DOI10.1090/surv/037/08
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.