Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections

Alberto Benvegnù; Mauro Spera

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 643-672
  • ISSN: 0392-4041

Abstract

top
In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.

How to cite

top

Benvegnù, Alberto, and Spera, Mauro. "Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 643-672. <http://eudml.org/doc/294043>.

@article{Benvegnù2013,
abstract = {In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.},
author = {Benvegnù, Alberto, Spera, Mauro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {643-672},
publisher = {Unione Matematica Italiana},
title = {Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections},
url = {http://eudml.org/doc/294043},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Benvegnù, Alberto
AU - Spera, Mauro
TI - Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 643
EP - 672
AB - In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.
LA - eng
UR - http://eudml.org/doc/294043
ER -

References

top
  1. ADEM, A., COHEN, D. and COHEN, F.R., On representations and K-theory of the braid groups, Math. Ann., 326 (2003), 515-542. Zbl1066.20042MR1992276DOI10.1007/s00208-003-0435-8
  2. AOMOTO, K., Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Tokio, 25 (1978), 149-156. Zbl0416.32020MR509582
  3. ARAVIND, P.K., Borromean entanglement of the GHZ state, in Potentiality, Entanglement and Passion-at-a-Distance eds R.S. Cohen, M. Horne, J. Stachel (Kluwer Academic Publishers, Boston, 1997), pp. 53-59. Zbl1006.81504MR1739812DOI10.1007/978-94-017-2732-7_4
  4. ARNOL'D, V. I., The cohomology ring of colored braids, Mat. Zametki, 5 No 2 (1969), 227-231. (Russian) English transl. in Trans. Moscow Math. Soc., 21 (1970), 30-52. MR242196
  5. ARTIN, E., Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ., 4 (1925), 42-72; Theory of braids, Ann. Math.,48 (1947), 101-126. MR3069440DOI10.1007/BF02950718
  6. BAR-NATAN, D., On the Vassiliev knot invariants, Topology, 34 (1995), 423-472. Zbl0898.57001MR1318886DOI10.1016/0040-9383(95)93237-2
  7. BENVEGNÙ, A. and SPERA, M., On Uncertainty, Braiding and Entanglement in Geometric Quantum Mechanics, Rev. Math. Phys., 18 (2006), 1075-1102. MR2287641DOI10.1142/S0129055X06002863
  8. BERGER, M., Third order link invariants, J. Phys. A: Math. Gen., 23 (1990), 2787- 2793. Zbl0711.57008MR1062985
  9. BERGER, M., Third order braid invariants, J. Phys. A: Math. Gen., 24 (1991), 4027- 4036. Zbl0747.57002MR1126646
  10. BERGER, M., Hamiltonian dynamics generated by Vassiliev invariants, J. Phys. A: Math. Gen., 34 (2001), 1363-1374. Zbl0984.70016MR1819937DOI10.1088/0305-4470/34/7/310
  11. BERGER, M., Topological Invariants in braid theory, Lett. Math. Phys., 55 (2001), 181-192. Zbl0986.57010MR1843442DOI10.1023/A:1010979823190
  12. BIGELOW, S., The Burau representation is not faithful for n = 5, Geometry & Topology, 3 (1999), 397-404. Zbl0942.20017MR1725480DOI10.2140/gt.1999.3.397
  13. BIRMAN, J.S. and BRENDLE, T.E., Braids: A Survey, Ch.2 in Handbook of Knot Theory eds. W. Menasco and M. Thistlethwaite (Elsevier B.V. 2005), pp. 19-103. Zbl1094.57006MR2179260DOI10.1016/B978-044451452-3/50003-4
  14. CHEN, K.-T., Iterated path integrals, Bull. Am. Math. Soc., 83 (1977), 831-879. Zbl0389.58001MR454968DOI10.1090/S0002-9904-1977-14320-6
  15. CHEN, K.-T., Collected Papers of K.-T. Chen (eds P. Tondeur and R. Hain), Contemporary Mathematicians (Birkäuser, Boston, MA2001). Zbl0977.01042MR1847673
  16. EVANS, N.W. and BERGER, M.A., A hierarchy of linking integrals, in Topological Aspects of the Dynamics of Fluids and Plasmas, eds. H.K. Moffatt et al. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 237-248. Zbl0799.57004MR1232234
  17. HAIN, R., The Geometry of the Mixed Hodge Structure on the Fundamental Group, Proc. Symp. Pure Math., 46 (1987), 247-282. MR927984
  18. KASSEL, C. and TURAEV, V., Braid groups (Springer, Berlin, 2008). Zbl1208.20041MR2435235DOI10.1007/978-0-387-68548-9
  19. KAUFFMAN, L. and LOMONACO, S., Quantum entanglement and topological entanglement, New J. Phys., 4 (2002) 73.1-73.18. MR1963025DOI10.1088/1367-2630/4/1/373
  20. KOHNO, T., Série de Poincaré-Koszul associé aux groupes de tresses pures, Inv. Math., 82 (1985), 57-75. Zbl0574.55009MR808109DOI10.1007/BF01394779
  21. KOHNO, T., Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier, Grenoble, 37 (1987), 139-160. Zbl0634.58040MR927394
  22. KOHNO, T., Linear representations of braid groups and classical Yang-Baxter equations, Cont. Math., 78 (1988), 339-363. Zbl0661.20026MR975088DOI10.1090/conm/078/975088
  23. KOHNO, T., Conformal Field Theory and Topology (AMS, Providence, RI, 2002). Zbl1024.81001MR1905659
  24. KONTSEVICH, M., Vassiliev's knot invariants, Adv. Sov. Math.16, Part 2 (1993), 137-150, (AMS Providence, RI). Zbl0839.57006MR1237836
  25. LAWRENCE, R. E., Homological representations of the Hecke algebra, Commun. Math. Phys., 135 (1990), 141-191. Zbl0716.20022MR1086755
  26. LE, T.Q.T. and MURAKAMI, J., Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl., 62 (1995), 193- 206. Zbl0839.57007MR1320252DOI10.1016/0166-8641(94)00054-7
  27. MOSTOW, G.D., Braids, hypergeometric functions, and lattices, Bull. Am. Math. Soc., 16 (1987), 225-246. Zbl0639.22005MR876959DOI10.1090/S0273-0979-1987-15510-8
  28. PAPI, P. and PROCESI, C., Invarianti di nodi, Quaderno U.M.I. 45 (Pitagora, Bologna, 1998) (in Italian). 
  29. PENNA, V. and SPERA, M., Higher order linking numbers, curvature and holonomy, J. Knot Theory Ram., 11 (2002), 701-723. Zbl1027.57007MR1918809DOI10.1142/S0218216502001913
  30. SPERA, M., A survey on the differential and symplectic geometry of linking numbers, Milan J. Math., 74 (2006), 139-197. Zbl1165.58004MR2278732DOI10.1007/s00032-006-0061-5
  31. TAVARES, J.N., Chen Integrals, Generalized Loops and Loop Calculus, Int. J. Mod. Phys. A, 9 (1994), 4511-4548. Zbl0988.58500MR1295759DOI10.1142/S0217751X94001795
  32. WECHSUNG, G., Functional Equations of Hyperlogarithms, in Structural properties of Polylogarithms (ed. L. Lewin), Ch. 8, (AMSProvidence, RI, 1991), pp. 171-184. MR1148379DOI10.1090/surv/037/08

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.