A Note on Some Nonlinear Fourth Order Differential Equations

Elvise Berchio

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 2, page 349-361
  • ISSN: 0392-4041

Abstract

top
For a family of fourth order semilinear ordinary differential equations we discuss some fundamental issues, such as global continuation of solutions and their qualitative behavior. The note is the summary of a communication given at the XIX Congress of U.M.I. (Bologna - September 12-17, 2011).

How to cite

top

Berchio, Elvise. "A Note on Some Nonlinear Fourth Order Differential Equations." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 349-361. <http://eudml.org/doc/294050>.

@article{Berchio2013,
abstract = {For a family of fourth order semilinear ordinary differential equations we discuss some fundamental issues, such as global continuation of solutions and their qualitative behavior. The note is the summary of a communication given at the XIX Congress of U.M.I. (Bologna - September 12-17, 2011).},
author = {Berchio, Elvise},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-361},
publisher = {Unione Matematica Italiana},
title = {A Note on Some Nonlinear Fourth Order Differential Equations},
url = {http://eudml.org/doc/294050},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Berchio, Elvise
TI - A Note on Some Nonlinear Fourth Order Differential Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 349
EP - 361
AB - For a family of fourth order semilinear ordinary differential equations we discuss some fundamental issues, such as global continuation of solutions and their qualitative behavior. The note is the summary of a communication given at the XIX Congress of U.M.I. (Bologna - September 12-17, 2011).
LA - eng
UR - http://eudml.org/doc/294050
ER -

References

top
  1. ARIOLI, G. - GAZZOLA, F. - GRUNAU, H.-CH., Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity, J. Diff. Eq.230 (2006), 743-770. Zbl1152.35360MR2269942DOI10.1016/j.jde.2006.05.015
  2. ARIOLI, G. - GAZZOLA, F. - GRUNAU, H.-CH. - MITIDIERI, E., A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal.36, (2005), 1226-1258. Zbl1162.35339MR2139208DOI10.1137/S0036141002418534
  3. BERCHIO, E. - CASSANI, D. - GAZZOLA, F., Hardy-Rellich inequalities with boundary remainder terms and applications, Manuscripta Math.131 (2010), 427-458. Zbl1187.35045MR2592089DOI10.1007/s00229-009-0328-6
  4. BERCHIO, E. - FARINA, A. - FERRERO, A. - GAZZOLA, F., Existence and stability of entire solutions to a semilinear fourth order elliptic problem, J. Diff. Eq.252 (2012), 2596-2616. Zbl1235.35126MR2860632DOI10.1016/j.jde.2011.09.028
  5. BERCHIO, E. - FERRERO, A. - GAZZOLA, F. - KARAGEORGIS, P., Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Diff. Eq.251 (2011), 2696-2727. Zbl1236.34042MR2831710DOI10.1016/j.jde.2011.05.036
  6. BERCHIO, E. - GAZZOLA, F., Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities, Electronic J. Diff. Eq.34 (2005), 1-20. Zbl1129.35349MR2135245
  7. BONHEURE, D. - SANCHEZ, L., Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Diff. Eq. Vol. III, Elsevier Science (2006), 103-202. MR2457633DOI10.1016/S1874-5725(06)80006-4
  8. BREUER, B. - HÓRAK, J. - MCKENNA, P. J. - PLUM, M., A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam, J. Diff. Eq.224 (2006), 60-97. Zbl1104.34034MR2220064DOI10.1016/j.jde.2005.07.016
  9. CHANG, S. Y. A. - CHEN, W., A note on a class of higher order conformally covariant equations, Discrete Cont. Dyn. Syst.7 (2001), 275-281. Zbl1014.35025MR1808400DOI10.3934/dcds.2001.7.275
  10. CHEN, Y. - MCKENNA, P. J., Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations, J. Diff. Eq.136 (1997), 325-355. Zbl0879.35113MR1448828DOI10.1006/jdeq.1996.3155
  11. DÁVILA, J. - DUPAIGNE, L. - GUERRA, I. - MONTENEGRO, M., Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal.39 (2007), 565-592. Zbl1138.35022MR2338421DOI10.1137/060665579
  12. DÁVILA, J. - FLORES, I. - GUERRA, I., Multiplicity of solutions for a fourth order problem with exponential nonlinearity, J. Diff. Eq.247 (2009), 3136-3162. Zbl1190.34017MR2569861DOI10.1016/j.jde.2009.07.023
  13. GAZZOLA, F. - PAVANI, R., Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlin. Anal. TMA74 (2011), 6696-6711. Zbl1237.34043MR2834070DOI10.1016/j.na.2011.06.049
  14. GAZZOLA, F. - PAVANI, R., Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges, IAB- MAS12, 6th International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, Stresa 2012, Biondini- Frangopol (Editors), Taylor-Francis Group (London, 2001), 3089-3093. 
  15. GEL'FAND, I. M., Some problems in the theory of quasilinear equations, Section 15, due to G. I. Barenblatt, Amer. Math. Soc. Transl. II. Ser. 29 (1963), 295-381. Russian original: Uspekhi Mat. Nauk.14 (1959), 87-158. MR110868
  16. JOSEPH, D. - LUNDGREN, T. S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal.49 (1973), 241-269. Zbl0266.34021MR340701DOI10.1007/BF00250508
  17. KARAGEORGIS, P. - MCKENNA, P. J., The existence of ground states for fourth-order wave equations, Nonlinear Analysis73 (2010), 367-373. Zbl1192.35113MR2650820DOI10.1016/j.na.2010.03.025
  18. KARAGEORGIS, P. - STALKER, J. G., A lower bound for the amplitude of traveling waves of suspension bridges, Nonlinear Analysis75 (2012), 5212-5214. Zbl1266.34078MR2927583DOI10.1016/j.na.2012.04.037
  19. LIN, C. S., A classification of solutions of a conformally invariant fourth order equation in n , Comment. Math. Helv.73 (1998), 206-231. Zbl0933.35057MR1611691DOI10.1007/s000140050052
  20. MCKENNA, P. J. - WALTER, W., Traveling waves in a suspension bridge, SIAM J. Appl. Math.50 (1990), 703-715. Zbl0699.73038MR1050908DOI10.1137/0150041
  21. MCKENNA, P. J., Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis, Milan J. Math.74 (2006), 79-115. Zbl1117.35025MR2278730DOI10.1007/s00032-006-0052-6
  22. PELETIER, L. A. - TROY, W. C., Spatial patterns. Higher order models in physics and mechanics. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA 45 (2001). Zbl1076.34515MR1839555DOI10.1007/978-1-4612-0135-9
  23. PELETIER, M. A., Sequential buckling: a variational analysis, SIAM J. Math. Anal.32 (2001), 1142-1168. Zbl1049.74023MR1828315DOI10.1137/S0036141099359925
  24. SMETS, D. - VAN DEN BERG, J. B., Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Diff. Eq.184 (2002), 78-96. Zbl1029.34036MR1929147DOI10.1006/jdeq.2001.4135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.