On the Classification of Surfaces of General Type with p g = q = 2

Matteo Penegini

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 3, page 549-563
  • ISSN: 0392-4041

How to cite

top

Penegini, Matteo. "On the Classification of Surfaces of General Type with $p_g = q = 2$." Bollettino dell'Unione Matematica Italiana 6.3 (2013): 549-563. <http://eudml.org/doc/294051>.

@article{Penegini2013,
author = {Penegini, Matteo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {549-563},
publisher = {Unione Matematica Italiana},
title = {On the Classification of Surfaces of General Type with $p_g = q = 2$},
url = {http://eudml.org/doc/294051},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Penegini, Matteo
TI - On the Classification of Surfaces of General Type with $p_g = q = 2$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/10//
PB - Unione Matematica Italiana
VL - 6
IS - 3
SP - 549
EP - 563
LA - eng
UR - http://eudml.org/doc/294051
ER -

References

top
  1. BAUER, I. - CATANESE, F. - PIGNATELLI, R., Complex surfaces of general type: some recent progress. Global aspects of complex geometry. Springer, Berlin (2006), 1-58. Zbl1118.14041MR2264106DOI10.1007/3-540-35480-8_1
  2. BAUER, I. - CATANESE, F. - GRUNEWALD, F., The classification of surfaces with p g = q = 0 isogenous to a product. Pure Appl. Math. Q., 4, no. 2, part 1 (2008), 547-586. Zbl1151.14027MR2400886DOI10.4310/PAMQ.2008.v4.n2.a10
  3. BAUER, I. - PIGNATELLI, R., The classification of minimal product-quotient surfaces with p g = 0 . Mathematics of Computation81, 280 (2012), 2389-2418. Zbl1306.14017MR2945163DOI10.1090/S0025-5718-2012-02604-4
  4. BEAUVILLE, A., Surfaces Algébriques Complex. Astérisque54, Paris (1978). MR485887
  5. BEAUVILLE, A., L'inegalite p g 2 q - 4 pour les surface de type general. Bull. Soc. Math. France110, (1982), 344-346. MR728990
  6. BOLZA, O., On binary sextic with linear transformations into themselves. Amer. J. Math.10, (1888), 47-70. Zbl19.0488.01MR1505464DOI10.2307/2369402
  7. BURNS, D. M. - WAHL, J. M., Local contributions to global deformations of surfaces. Invent. Math.26 (1974), 67-88. Zbl0288.14010MR349675DOI10.1007/BF01406846
  8. CARNOVALE, G. - POLIZZI, F., The classification of surfaces with p g = q = 1 isogenous to a product of curves. Adv. Geom., Vol. 9, no. 2 (2009), 233-256. Zbl1190.14036MR2523842DOI10.1515/ADVGEOM.2009.015
  9. CATANESE, F., Everywhere non reduced moduli spaces. Invent. Math.98 (1989), 293-310. Zbl0701.14039MR1016266DOI10.1007/BF01388855
  10. CATANESE, F., Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math.104 (1991), 263-289. Zbl0743.32025MR1098610DOI10.1007/BF01245076
  11. CATANESE, F., Fibred surfaces, varieties isogenous to a product and related moduli spaces. Amer. J. Math.122, (2000), 1-44. Zbl0983.14013MR1737256
  12. CATANESE, F., A superficial working guide to deformations and moduli, e-print arXiv:1106.1368, to appear in the Handbook of Moduli, a volume in honour of David Mumford, to be published by International Press. MR3184164
  13. CATANESE, F. - CILIBERTO, C. - MENDES LOPES, M., On the classification of irregular surfaces of general type with nonbirational bicanonical map. Trans. Amer. Math. Soc.350, no. 1 (1998), 275-308. Zbl0889.14019MR1422597DOI10.1090/S0002-9947-98-01948-5
  14. CHEN, J. - HACON, C., A Surface of general type with p g = q = 2 and K 2 = 5 . Pacific. J. Math.223 no. 2 (2006), 219-228. Zbl1112.14047MR2221025DOI10.2140/pjm.2006.223.219
  15. CILIBERTO, C. - MENDES LOPES, M., On surfaces with p g = q = 2 and non-birational bicanonical map. Adv. Geom.2, n. 3 (2002), 281-300. Zbl1027.14018MR1924760DOI10.1515/advg.2002.014
  16. CILIBERTO, C. - MENDES LOPES, M. - PARDINI, R., The classification of minimal irregular surfaces of general type with K 2 = 2 p g , preprint arXiv:1307.6228. MR3272911DOI10.14231/AG-2014-021
  17. GIESEKER, D., Global moduli for surfaces of general type. Invent. Math43, no. 3 (1977), 233-282. Zbl0389.14006MR498596DOI10.1007/BF01390081
  18. HACON, C. - PARDINI, R., Surfaces with p g = q = 3 . Trans. Amer. Math. Soc.354 (2002), 2631-2638. Zbl1009.14004MR1895196DOI10.1090/S0002-9947-02-02891-X
  19. HAHN, D. W. - MIRANDA, R., Quadruple covers of algebraic varieties. J. Algebraic Geom.8 (1999). Zbl0982.14008MR1658196
  20. MANETTI, M., Surfaces of Albanese General type and the Severi conjecture. Math. Nachr., Vol. 261/262 (2003), 105-122. Zbl1044.14017MR2020390DOI10.1002/mana.200310115
  21. MIRANDA, R., Triple covers in algebraic geometry. Amer. J. of Math.107 (1985), 1123-1158. Zbl0611.14011MR805807DOI10.2307/2374349
  22. MISTRETTA, E. - POLIZZI, F., Standard isotrivial fibrations with p g = q = 1 II. AG/0805.1424. 
  23. PIROLA, G. P., Surfaces with p g = q = 3 . Manuscripta Math.108, no. 2 (2002), 163-170. Zbl0997.14009MR1918584DOI10.1007/s002290200253
  24. PENEGINI, M., The classification of isotrivially fibred surfaces with p g = q = 2 . Collect. Math.62, No. 3 (2011), 239-274. Zbl1228.14035MR2825713DOI10.1007/s13348-011-0043-y
  25. PENEGINI, M. - POLIZZI, F., On surfaces with p g = q = 2 , K 2 = 5 and Albanese map of degree 3. e-print arXiv:1011.4388 (2010), to appear in Osaka J. Math. MR3128997
  26. PENEGINI, M. - POLIZZI, F., On surfaces with p g = q = 2 , K 2 = 6 and Albanese map of degree 2. e-print arXiv:1105.4983 (2011), to appear in Canad. J. Math. MR3004463DOI10.4153/CJM-2012-007-0
  27. PENEGINI, M. - POLIZZI, F., A new family of surfaces with p g = q = 2 and K 2 = 6 whose Albanese map has degree 4. e-print arXiv:1207.3526. Zbl1325.14056MR3291798DOI10.1112/jlms/jdu048
  28. ZUCCONI, F., Surfaces with p g = q = 2 and an irrational pencil. Canad. J. Math. Vol.55 (2003), 649-672. Zbl1053.14042MR1980618DOI10.4153/CJM-2003-027-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.