Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations

Matthias Liero; Ulisse Stefanelli

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 1, page 1-27
  • ISSN: 0392-4041

Abstract

top
We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via Γ -convergence and is extended to some time-discrete situation as well.

How to cite

top

Liero, Matthias, and Stefanelli, Ulisse. "Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 1-27. <http://eudml.org/doc/294053>.

@article{Liero2013,
abstract = {We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via $\Gamma$-convergence and is extended to some time-discrete situation as well.},
author = {Liero, Matthias, Stefanelli, Ulisse},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-27},
publisher = {Unione Matematica Italiana},
title = {Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations},
url = {http://eudml.org/doc/294053},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Liero, Matthias
AU - Stefanelli, Ulisse
TI - Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 1
EP - 27
AB - We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via $\Gamma$-convergence and is extended to some time-discrete situation as well.
LA - eng
UR - http://eudml.org/doc/294053
ER -

References

top
  1. AKAGI, G. - STEFANELLI, U., A variational principle for doubly nonlinear evolution. Appl. Math. Lett., 23, 9 (2010), 1120-1124. Zbl1195.35187MR2659149DOI10.1016/j.aml.2010.04.047
  2. AKAGI, G. - STEFANELLI, U., Weighted energy-dissipation functionals for doubly nonlinear evolution. J. Funct. Anal., 260, 9 (2011), 2541-2578. Zbl1216.49007MR2772344DOI10.1016/j.jfa.2010.12.027
  3. AKAGI, G. - STEFANELLI, U., A dual variational approach to doubly nonlinear equations. In preparation, 2012. 
  4. ATTOUCH, H., Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA, 1984. Zbl0561.49012MR773850
  5. BRAIDES, A., Γ -convergence for beginners. Oxford Lecture Series in Mathematics and its Applications22. Oxford University Press, 2002. MR1968440DOI10.1093/acprof:oso/9780198507840.001.0001
  6. CONTI, S. - ORTIZ, M., Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids, 56 (2008), 1885-1904. Zbl1162.74369MR2410326DOI10.1016/j.jmps.2007.11.006
  7. DAL MASO, G., An introduction to Γ -convergence. Progress in Nonlinear Differential Equations and their Applications8. Birkhäuser, 1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  8. DE GIORGI, E., Conjectures concerning some evolution problems. Duke Math. J., 81, 1 (1996), 255-268. Zbl0874.35027MR1395405DOI10.1215/S0012-7094-96-08114-4
  9. ILMANEN, T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994), 520:x+90. Zbl0798.35066MR1196160DOI10.1090/memo/0520
  10. LARSEN, C. J. - ORTIZ, M. - RICHARDSON, C. L., Fracture paths from front kinetics: relaxation and rate independence. Arch. Ration. Mech. Anal., 193 (2009), 539-583. Zbl1170.74007MR2525111DOI10.1007/s00205-009-0216-y
  11. LIERO, M. - STEFANELLI, U., A new minimum principle for Lagrangian Mechanics. J. Nonlinear Sci., to appear, 2012. Zbl1358.70027MR3041623DOI10.1007/s00332-012-9148-z
  12. LIONS, J.-L., Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France, 93 (1965), 155-175. MR194760
  13. LIONS, J.-L. - MAGENES, E., Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. MR247243
  14. LUCIA, M. - MURATOV, C. B. - NOVAGA, M., Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders. Arch. Ration. Mech. Anal., 188, 3 (2008), 475-508. Zbl1165.35028MR2393438DOI10.1007/s00205-007-0097-x
  15. MIELKE, A. - ORTIZ, M., A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var., 14, 3 (2008), 494-516. Zbl1357.49043MR2434063DOI10.1051/cocv:2007064
  16. MIELKE, A. - STEFANELLI, U., A discrete variational principle for rate-independent evolution. Adv. Calc. Var., 1, 4 (2008), 399-431. Zbl1180.35283MR2480064DOI10.1515/ACV.2008.017
  17. MIELKE, A. - STEFANELLI, U., Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var., 17, 1 (2011), 52-85. Zbl1218.35007MR2775186DOI10.1051/cocv/2009043
  18. MOSCO, U., Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585. Zbl0192.49101MR298508DOI10.1016/0001-8708(69)90009-7
  19. MURATOV, C. B. - NOVAGA, M., Front propagation in infinite cylinders. I. A variational approach. Commun. Math. Sci., 6, 4 (2008), 799-826. Zbl1173.35537MR2511694
  20. MURATOV, C. B. - NOVAGA, M., Front propagation in infinite cylinders. II. The sharp reaction zone limit. Calc. Var. Partial Differential Equations, 31, 4 (2008), 521-547. Zbl1166.35387MR2372905DOI10.1007/s00526-007-0125-6
  21. ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., Weighted energy-dissipation functionals for gradient flows in metric spaces. In preparation, 2011. MR2763076DOI10.1016/j.matpur.2010.10.011
  22. ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., A variational principle for gradient flows in metric spaces. C. R. Math. Acad. Sci. Paris, 349 (2011), 1224-1228. MR2861989DOI10.1016/j.crma.2011.11.002
  23. SERRA, E. - TILLI, P., Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi. Ann. of Math. (2), 175, 3 (2012), 1551- 1574. Zbl1251.49019MR2912711DOI10.4007/annals.2012.175.3.11
  24. SPADARO, E. N. - STEFANELLI, U., A variational view at mean curvature evolution for cartesian surfaces. J. Evol. Equ., 11, 4 (2011), 793-809. Zbl1246.35117MR2861306DOI10.1007/s00028-011-0111-5
  25. STEFANELLI, U., The De Giorgi conjecture on elliptic regularization. Math. Models Meth. Appl. Sci., 21, 6 (2011), 1377-1394. Zbl1228.35023MR2819200DOI10.1142/S0218202511005350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.