Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations
Matthias Liero; Ulisse Stefanelli
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 1, page 1-27
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topLiero, Matthias, and Stefanelli, Ulisse. "Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 1-27. <http://eudml.org/doc/294053>.
@article{Liero2013,
abstract = {We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via $\Gamma$-convergence and is extended to some time-discrete situation as well.},
author = {Liero, Matthias, Stefanelli, Ulisse},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-27},
publisher = {Unione Matematica Italiana},
title = {Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations},
url = {http://eudml.org/doc/294053},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Liero, Matthias
AU - Stefanelli, Ulisse
TI - Weighted Inertia-Dissipation-Energy Functionals for Semilinear Equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 1
EP - 27
AB - We address a global-in-time variational approach to semilinear PDEs of either parabolic or hyperbolic type by means of the so-called Weighted Inertia-Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE functional are proved to converge, up to subsequences, to weak solutions of the limiting PDE. This entails the possibility of reformulating the limiting differential problem in terms of convex minimization. The WIDE formalism can be used in order to discuss parameters asymptotics via $\Gamma$-convergence and is extended to some time-discrete situation as well.
LA - eng
UR - http://eudml.org/doc/294053
ER -
References
top- AKAGI, G. - STEFANELLI, U., A variational principle for doubly nonlinear evolution. Appl. Math. Lett., 23, 9 (2010), 1120-1124. Zbl1195.35187MR2659149DOI10.1016/j.aml.2010.04.047
- AKAGI, G. - STEFANELLI, U., Weighted energy-dissipation functionals for doubly nonlinear evolution. J. Funct. Anal., 260, 9 (2011), 2541-2578. Zbl1216.49007MR2772344DOI10.1016/j.jfa.2010.12.027
- AKAGI, G. - STEFANELLI, U., A dual variational approach to doubly nonlinear equations. In preparation, 2012.
- ATTOUCH, H., Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA, 1984. Zbl0561.49012MR773850
- BRAIDES, A., -convergence for beginners. Oxford Lecture Series in Mathematics and its Applications22. Oxford University Press, 2002. MR1968440DOI10.1093/acprof:oso/9780198507840.001.0001
- CONTI, S. - ORTIZ, M., Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids, 56 (2008), 1885-1904. Zbl1162.74369MR2410326DOI10.1016/j.jmps.2007.11.006
- DAL MASO, G., An introduction to -convergence. Progress in Nonlinear Differential Equations and their Applications8. Birkhäuser, 1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DE GIORGI, E., Conjectures concerning some evolution problems. Duke Math. J., 81, 1 (1996), 255-268. Zbl0874.35027MR1395405DOI10.1215/S0012-7094-96-08114-4
- ILMANEN, T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994), 520:x+90. Zbl0798.35066MR1196160DOI10.1090/memo/0520
- LARSEN, C. J. - ORTIZ, M. - RICHARDSON, C. L., Fracture paths from front kinetics: relaxation and rate independence. Arch. Ration. Mech. Anal., 193 (2009), 539-583. Zbl1170.74007MR2525111DOI10.1007/s00205-009-0216-y
- LIERO, M. - STEFANELLI, U., A new minimum principle for Lagrangian Mechanics. J. Nonlinear Sci., to appear, 2012. Zbl1358.70027MR3041623DOI10.1007/s00332-012-9148-z
- LIONS, J.-L., Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France, 93 (1965), 155-175. MR194760
- LIONS, J.-L. - MAGENES, E., Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. MR247243
- LUCIA, M. - MURATOV, C. B. - NOVAGA, M., Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders. Arch. Ration. Mech. Anal., 188, 3 (2008), 475-508. Zbl1165.35028MR2393438DOI10.1007/s00205-007-0097-x
- MIELKE, A. - ORTIZ, M., A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var., 14, 3 (2008), 494-516. Zbl1357.49043MR2434063DOI10.1051/cocv:2007064
- MIELKE, A. - STEFANELLI, U., A discrete variational principle for rate-independent evolution. Adv. Calc. Var., 1, 4 (2008), 399-431. Zbl1180.35283MR2480064DOI10.1515/ACV.2008.017
- MIELKE, A. - STEFANELLI, U., Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var., 17, 1 (2011), 52-85. Zbl1218.35007MR2775186DOI10.1051/cocv/2009043
- MOSCO, U., Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585. Zbl0192.49101MR298508DOI10.1016/0001-8708(69)90009-7
- MURATOV, C. B. - NOVAGA, M., Front propagation in infinite cylinders. I. A variational approach. Commun. Math. Sci., 6, 4 (2008), 799-826. Zbl1173.35537MR2511694
- MURATOV, C. B. - NOVAGA, M., Front propagation in infinite cylinders. II. The sharp reaction zone limit. Calc. Var. Partial Differential Equations, 31, 4 (2008), 521-547. Zbl1166.35387MR2372905DOI10.1007/s00526-007-0125-6
- ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., Weighted energy-dissipation functionals for gradient flows in metric spaces. In preparation, 2011. MR2763076DOI10.1016/j.matpur.2010.10.011
- ROSSI, R. - SAVARÉ, G. - SEGATTI, A. - STEFANELLI, U., A variational principle for gradient flows in metric spaces. C. R. Math. Acad. Sci. Paris, 349 (2011), 1224-1228. MR2861989DOI10.1016/j.crma.2011.11.002
- SERRA, E. - TILLI, P., Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi. Ann. of Math. (2), 175, 3 (2012), 1551- 1574. Zbl1251.49019MR2912711DOI10.4007/annals.2012.175.3.11
- SPADARO, E. N. - STEFANELLI, U., A variational view at mean curvature evolution for cartesian surfaces. J. Evol. Equ., 11, 4 (2011), 793-809. Zbl1246.35117MR2861306DOI10.1007/s00028-011-0111-5
- STEFANELLI, U., The De Giorgi conjecture on elliptic regularization. Math. Models Meth. Appl. Sci., 21, 6 (2011), 1377-1394. Zbl1228.35023MR2819200DOI10.1142/S0218202511005350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.