New axioms in set theory
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2018)
- Volume: 3, Issue: 3, page 211-236
- ISSN: 2499-751X
Access Full Article
topAbstract
topHow to cite
topVenturi, Giorgio, and Viale, Matteo. "New axioms in set theory." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 3.3 (2018): 211-236. <http://eudml.org/doc/294070>.
@article{Venturi2018,
abstract = {In this article we review the present situation in the foundations of set theory, discussing two programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis; these programs are centered, respectively, on forcing axioms and Woodin's V = Ultimate-L conjecture. While doing so, we briefly introduce the key notions of set theory.},
author = {Venturi, Giorgio, Viale, Matteo},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {12},
number = {3},
pages = {211-236},
publisher = {Unione Matematica Italiana},
title = {New axioms in set theory},
url = {http://eudml.org/doc/294070},
volume = {3},
year = {2018},
}
TY - JOUR
AU - Venturi, Giorgio
AU - Viale, Matteo
TI - New axioms in set theory
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2018/12//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 211
EP - 236
AB - In this article we review the present situation in the foundations of set theory, discussing two programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis; these programs are centered, respectively, on forcing axioms and Woodin's V = Ultimate-L conjecture. While doing so, we briefly introduce the key notions of set theory.
LA - eng
UR - http://eudml.org/doc/294070
ER -
References
top- AUDRITO, G. and VIALE, M.. Absoluteness via resurrection. Journal of Mathematical Logic, 17(2):1750005, 36, 2017. Zbl06815211MR3730561DOI10.1142/S0219061317500052
- BARTON, N., TERNULLO, C., and VENTURI, G.. On forms of justification in set theory. Preprint, 2018.
- BELL, J.. Set Theory. Boolean Valued Models and Independence Proofs. Oxford Science Pubblications, 2005. Zbl1065.03034MR2257858DOI10.1093/acprof:oso/9780198568520.001.0001
- BERNAYS, P.. Sur le platonism dans les mathématiques. L'enseignement mathématique, (34):52-69, 1935. English transl.: On mathematical platonism, in P. Benacerraf and H. Putnam, editors, Philosophy of mathematics: selected readings, Cambridge University Press, pp. 258-271, 1983. MR742474
- BOOLOS, G.. The iterative conception of set. Journal of Philosophy, 68(8):215-231, 1971.
- CALDERONI, F. and THOMAS, S.. The bi-embeddability relation for countable abelian groups. Transaction of the American Mathematical Society, To appear. Zbl06999078MR3894051DOI10.1090/tran/7513
- CANTOR, G.. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematich-philosophischer Versuch in der Lehre des Unendichen. Teubner, 1883. English transl.: Foundations of a general theory of manifolds: a mathematico-philosophical investigation into the theory of the infinite, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 878-919, 2008.
- CANTOR, G.. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen, 46(4):481-512, 1895. Italian transl.: in G. Cantor, La Formazione della Teoria degli Insiemi (Scritti 1872-1899), G. Rigamonti, editor, Mimesis, 2012. MR1510964DOI10.1007/BF01444205
- COHEN, J. P.. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 50(6):1143-1148, 1963. Zbl0192.04401MR157890DOI10.1073/pnas.50.6.1143
- COHEN, J. P.. Skolem and pessimism about proof in mathematics. Philosophical Transaction of the Royal Society A, 363:2407-2418, 2005. Zbl1128.03002MR2197657DOI10.1098/rsta.2005.1661
- DALES, H. G. and WOODIN, W. H.. An Introduction to Independence for Analysts, volume 115 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. Zbl0629.03030MR942216DOI10.1017/CBO9780511662256
- FARAH, I.. All automorphisms of the Calkin algebra are inner. Annals of Mathematics, 173(2):619-661, 2010. Zbl1250.03094MR2776359DOI10.4007/annals.2011.173.2.1
- FEFERMAN, S.. Does mathematics need new axioms?American Mathematical Monthly, 106:106-111, 1999. Zbl1076.00501MR1671849DOI10.2307/2589047
- FEFERMAN, S., FRIEDMAN, H., MADDY, P., and STEEL, J.. Does mathematics need new axioms?Bulletin of Symbolic Logic, 6(4):401-446, 2000. Zbl0977.03002MR1814122DOI10.2307/420965
- FENG, Q., MAGIDOR, M., and WOODIN, H.. Universally Baire sets of reals. In H. Judah, W. Just, and H. Woodin, editors, Set Theory of the Continuum, pages 203-242. Springer, 1992. Zbl0781.03034MR1233821DOI10.1007/978-1-4613-9754-0_15
- FERREIRÓS, J.. Labyrinth of Thought. A History of Set Theory and its Role in Modern Mathematics. Birkhäuser, 1999. MR1726552DOI10.1007/978-3-0348-5049-0
- FERREIRÓS, J.. On arbitrary sets and ZFC. Bullettin of Symbolic logic, 17(3):361-393, 2011. MR2856078DOI10.2178/bsl/1309952318
- FINE, K. and TENNANT, N.. A Defence of Arbitrary Objects. Proceedings of the Aristotelian Society, Supplementary Volumes, 57:55-77 + 79-89, 1983.
- FOREMAN, M., MAGIDOR, M. and SHELAH, S.. Martin's Maximum, saturated ideals and nonregular ultrafilters. Annals of Mathematics (2), 127(1):1-47, 1988. Zbl0645.03028MR924672DOI10.2307/1971415
- GALE, D. and STEWART, F.. Infinite games with perfect information. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games, pages 245-266. Princeton University press, 1953. Zbl0050.14305MR54922
- GIVANT, S. and HALMOS, P.. Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer, New York, 2009. Zbl1168.06001MR2466574DOI10.1007/978-0-387-68436-9
- GÖDEL, K.. The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 24(12):556-557, 1938.
- GÖDEL, K.. What is Cantor's continuum problem?American Mathematical Monthly, (54):515-525, 1947; errata, 55, p. 151. Italian trasl.: Cos'è il problema del continuo di Cantor?, in E. Ballo and G. Lolli and C. Mangione, editors, Opere. Volume 2, 1938-1974, Bollati Boringhieri, pp. 180-192, 2002. MR23780DOI10.2307/2304666
- GOLDBLATT, R.. On the role of the Baire category theorem and dependent choice in the foundation of logic. The Journal of Symbolic Logic, 50(2):412-422, 1985. Zbl0567.03023MR793122DOI10.2307/2274230
- GRAY, G.. Plato's Ghost. The Modernist Trasnformation of Mathematics. Princeton University Press, 2008. Zbl1166.00005MR2452344
- HAMKINS, J. D. and SEABOLD, D.. Well-founded boolean ultrapowers as large cardinal embeddings. 40 pages, 2012.
- HILBERT, D.. Mathematical problems. Bulletin of the American Mathematical Society, 37(4):407-436, 2000. Italian translation in: V. Abrusci (editor), D. Hilbert, Ricerche sui fondamenti della matematica, Bibliopolis, 1978, pp. 145-162. Zbl0979.01028MR1779412DOI10.1090/S0273-0979-00-00881-8
- HRBACEK, K. and JECH, T.. Introduction to set theory, volume 220 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, third edition, 1999. MR1697766
- JENSEN, R. B.. The fine structure of the constructible hierarchy. Annals of Pure and Applied Logic, 4:229-308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver. Zbl0257.02035MR309729DOI10.1016/0003-4843(72)90001-0
- KANAMORI, A.. The Higher Infinite. Large Cardinals in Set Theory from their Beginnings. Springer-Verlag, 1994. Zbl0813.03034MR1321144
- KECHRIS, A.. Classical Descriptive Set Theory. Springer Verlag, 1994. Zbl0805.54035MR1321597DOI10.1007/978-1-4612-4190-4
- KOELLNER, P.. On the question of absolute undecidability. Philosophia Mathematica, 14:153-188, 2006. Zbl1113.03011MR2245398DOI10.1093/philmat/nkj009
- KOELLNER, P.. On reflection principles. Annals of Pure and Applied Logic, 157(2)(4):206-219, 2009. Zbl1162.03030MR2499709DOI10.1016/j.apal.2008.09.007
- KUNEN, K.. Set Theory. An Introduction to Independence Proofs. North-Holland, 1980. Zbl0443.03021MR597342
- LARSON, P. B.. The Stationary Tower: Notes on a Course by W. Hugh Woodin. AMS, 2004. Zbl1072.03031MR2069032DOI10.1090/ulect/032
- LARSON, P. B.. A brief history of determinacy. In Sets and Extensions in the Twentieth Century, 2012. Zbl1255.03010MR3409863DOI10.1016/B978-0-444-51621-3.50006-2
- MADDY, P.. Naturalism in Mathematics. Clarendon Press, 1997. Zbl0931.03003MR1699270
- MADDY, P.. Defending the Axioms: On the Philosophical Foundations of Set Theory. Oxford University Press, 2011. Zbl1219.00014MR2779203DOI10.1093/acprof:oso/9780199596188.001.0001
- MARTIN, D.. Measurable cardinals and analytic games. Fundamenta Mathematicae, 66:287-291, 1970. Zbl0216.01401MR258637DOI10.4064/fm-66-3-287-291
- MARTIN, D.. Borel determinacy. Annals of Mathematics, 102:363-371, 1975. MR403976DOI10.2307/1971035
- MARTIN, D. A. and STEEL, J. R.. A proof of projective determinacy. Journal of the American Mathematical Society, 2(1):71-125, 1989. Zbl0668.03021MR955605DOI10.2307/1990913
- MAYBERRY, J. P.. The Foundations of Mathematics in the Theory of Sets. Cambridge University Press, 2000. Zbl0972.03001MR1826603
- MOORE, G. H.. Zermelo's Axiom of Choice. Dover, 1982. Zbl0497.01005MR679315DOI10.1007/978-1-4613-9478-5
- MOORE, J. T.. The Proper Forcing Axiom. In R. Bhatia, editor, Proceedings of the International Congress of Mathematicians. Volume 2, pages 1-25. World Scientific, 2010. MR2827783
- MOORE, J. T.. What makes the continuum N2. In Foundations of Mathematics, volume 690 of Contemp. Math., pages 259-287. Amer. Math. Soc., Providence, RI, 2017. Zbl06767151MR3656315
- MYCIELSKI, J. and STEINHAUS, H.. A mathematical axiom contradicting the axiom of choice. Bulletin de l'Académie Polonaise des Sciences, 10:1-3, 1962. Zbl0106.00804MR140430
- PHILLIPS, N. and WEAVER, N.. The calkin algebra has outer automorphisms. Duke Mathematical Journal, 139(1):185-202, 2007. Zbl1220.46040MR2322680DOI10.1215/S0012-7094-07-13915-2
- SCOTT, D.. Measurable cardinals and constructible sets. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 9:521-524, 1961. Zbl0154.00702MR143710
- SHELAH, S.. Whitehead groups may not be free, even assuming CH. I. Israel Journal of Mathematics, 28(3):193-203, 1977. Zbl0369.02035MR469757DOI10.1007/BF02759809
- SHELAH, S.. Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, 35(4):257-285, 1980. Zbl0467.03049MR594332DOI10.1007/BF02760652
- SHULMAN, M. A.. Set theory for category theory. arXiv:0810.1279v2, 2008.
- SOLOVAY, R.. A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics. Second Series, 92(1):1-56, 1970. Zbl0207.00905MR265151DOI10.2307/1970696
- STEEL, J.. What is a Woodin cardinal?Notices of the American Mathematical Society, 54(9):1146-1147, 2007. Zbl1153.03315MR2349534
- TODORCÆEVIĆ, S.. Partition Problems in Topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989. MR980949DOI10.1090/conm/084
- VACCARO, A. and VIALE, M.. Generic absoluteness and boolean names for elements of a Polish space. Boll. Unione Mat. Ital., 10(3):293-319, 2017. Zbl06807740MR3691801DOI10.1007/s40574-017-0124-2
- VENTURI, G.. Forcing, multiverse and realism. In F. Boccuni and A. Sereni, editors, Objectivity, Knowledge and Proof. FIlMat Studies in the Philosophy of Mathematics, 211-241. Springer, 2016. MR3618488
- VENTURI, G.. Genericity and arbitrariness, Logique et Analyse. To appear.
- VENTURI, G.. On generic arbitrary models of set theory. Preprint, 2017.
- VIALE, M.. Notes on forcing. Zbl1150.03015
- VIALE, M.. Category forcings, MM+++ and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, 29(3):675-728, 2016. Zbl1403.03108MR3486170DOI10.1090/jams/844
- VIALE, M.. Forcing the truth of a weak form of Schanuel's conjecture. Confluentes Math., 8(2):59-83, 2016. Zbl06754758MR3633221DOI10.5802/cml.33
- VIALE, M.. Useful axioms. Ifcolog Journal of Logics and their Applications, 4(10):3427-3462, 2017.
- WOODIN, H.. The Continuum Hypothesis. Part I. Notices of the American Mathematical Society, 48(6):567-576, 2001. Zbl0992.03063MR1834351
- ZERMELO, E.. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65:261-281, 1908. English transl.: Investigations in the foundations of set theory I, in J. van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199-215, 1967. Zbl39.0097.03MR1511466DOI10.1007/BF01449999
- ZERMELO, E.. Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16:29-47, 1930. English transl.: On boundary numbers and domains of sets: New investigations in the foundations of set theory, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 1219-1233, 2008; Italian transl.: in C. Cellucci, editor, Il Paradiso di Cantor, Bibliopolis, pp. 178-195, 1978. MR270860
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.